PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 30 > pp. 131-156

ELECTROMAGNETIC FIELDS OF A THIN CIRCULA LOOP ANTENNA ABOVE A (UN)GROUNDED MULTI-LAYERED CHIRAL SLABS: THE NON-UNIFORM CURRENT EXCITATION

By W.-Y. Yin, L.-W. Li, T.-S. Yeo, and M.-S. Leong

Full Article PDF (1,506 KB)

Abstract:
The technique of dyadic Green's function (DGF) expressed in terms of the normalised cylindrical vector wave functions is adopted in this study for examining the electromagnetic fields excited by one thin circular loop antenna above a (un)grounded multi-layered chiral slabs. The current carried on such a circular loop antenna is expressed in a generalized Fourier series so as to incorporate practical situations. Thereby, exact representations of the radiated fields in both near and far zones are obtained in closed form, in a superposition of the rightand left-handed circularly polarized waves. Furthermore, numerical results are presented to show the radiation characteristics of the loop antenna in different layered chiral slab structures. The contributions of the lower- as well as higher-order current excitations to the far-zone field are examined in detail.

Citation: (See works that cites this article)
W.-Y. Yin, L.-W. Li, T.-S. Yeo, and M.-S. Leong, "Electromagnetic Fields of a Thin Circula Loop Antenna Above a (Un)Grounded Multi-Layered Chiral Slabs: the Non-Uniform Current Excitation," Progress In Electromagnetics Research, Vol. 30, 131-156, 2001.
doi:10.2528/PIER00031304
http://www.jpier.org/PIER/pier.php?paper=0003134

References:
1. Bassiri, S., N. Engheta, and C. H. Papas, "Dyadic Green’s function and dipole radiation in chiral media," Alta Frequenza, Vol. 55, No. 2, 83-86, 1986.

2. Engheta, N. and S. Bassiri, "One- and two-dimensional dyadic Green’s function in chiral media," IEEE Trans. Antennas Propag., Vol. 37, No. 4, 512-515, 1989.
doi:10.1109/8.24173

3. Weiglhofer, W. S., "A simple and straightforward derivation of the dyadic Green’s function of an isotropic chiral medium," Arch fur Elekt. Ubertragung, Vol. 43, No. 1, 51-52, 1989.

4. Lindell, I. V., "Simple derivation of various Green dyadics for chiral media," Arch fur Elekt. Ubertragung, Vol. 44, No. 5, 427-429, 1990.

5. Lakhtakia, A., "Dyadic Green’s functions for an isotropic chiral half-space bounded by an anisotropic impedance plane," Int. J. Electronics, Vol. 72, No. 3, 493-497, 1992.
doi:10.1080/00207219208925591

6. Lakhtakia, A., "Time-harmonic dyadic Green’s functions for reflection and transmission by a chiral slab," Arch fur Elekt. Ubertragung, Vol. 47, No. 1, 1-5, 1993.

7. Yin, W. Y., W. B. Wang, and P. Li, "Dyadic Green’s function in arbitrary multi-layered spherical chiral media and its applications," J. Electromang. Waves Appl., Vol. 9, No. 1/2, 157-173, 1995.
doi:10.1163/156939395X00307

8. Toscano, A. and L. Vegni, "Spectral dyadic Green’s function formulation for planar integrated structures with a grounded chiral slab," J. Electromang. Waves Appl., Vol. 6, No. 5/6, 751-770, 1992.
doi:10.1163/156939392X01426

9. He, S., "Harmonic Green’s function technique and wave propagation in stratified non-reciprocal chiral slab with multiple discontinuities," J. Math. Phys., Vol. 33, No. 12, 1-8, 1992.
doi:10.1063/1.529808

10. Ali, S. M., T. M. Habashy, and J. A. Kong, "Spectral-domain dyadic Green’s function in layered chiral media," J. Opt. Soc. Am. A, Vol. 9, No. 3, 413-423, 1992.
doi:10.1364/JOSAA.9.000413

11. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yao, "A general expression of dyadic Green’s function in radially multi-layered chiral media," IEEE Trans. Microwave Theory Tech., Vol. 43, 232-238, 1995.
doi:10.1109/22.372122

12. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yao, "Analytic expression for scattering dyadic Green’s function for cylindrical multilayered chiral media," J. Electromang. Waves Appl., Vol. 9, 1207-1221, 1995.

13. Zhuck, N. P., O. V. Charkina, and S. N. Shul’ga, "Green’s functions of Maxwell’s equations for the plane-layered Tellegen biisotropic medium," J. C.mmun. Tech. Electron., Vol. 41, No. 1, 22-28, 1996.

14. Hui, H.-T. and E. K. N. Yung, "The eigenfunction expansion of dyadic Green’s functions for chirowaveguides," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 9, 1575-1583, 1996.
doi:10.1109/22.536607

15. Jaggard, D. L., X. Sun, and N. Engheta, "Canonical sources and duality in chiral media," IEEE Trans. Antennas Propag., Vol. 36, No. 7, 1007-1013, 1988.
doi:10.1109/8.7205

16. Jaggard, D. L., J. C. Liu, A. Grot, and P. Pelet, "Thin wire antennas in chiral media," Electr. Lett., Vol. 27, No. 3, 243-244, 1991.
doi:10.1049/el:19910157

17. Jaggard, D. L., J. C. Liu, A. Grot, and P. Pelet, "Radiation and scattering from thin wires in chiral media," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 1273-1282, 1992.
doi:10.1109/8.202704

18. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "Radiation and scattering by a straight thin-wire antenna embedded in an isotropic chiral medium," IEEE Trans. Electromagn. Compat., Vol. 30, No. 2, 84-87, 1988.
doi:10.1109/15.19895

19. Engheta, N. and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere," J. Appl., Phs., Vol. 67, No. 2, 639-646, 1990.
doi:10.1063/1.345766

20. Kowarz, M. W. and N. Engheta, "Spherical chirolenses," Opt. Lett., Vol. 15, No. 6, 299-302, 1992.
doi:10.1364/OL.15.000299

21. Monzon, J. C., "Radiation and scattering in homogeneous general biisotropic regions," IEEE Trans. Antennas Propag., Vol. 38, No. 2, 227-235, 1990.
doi:10.1109/8.45125

22. Yin, W. Y. and W. B. Wang, "Dyadic Green’s function of cylindrical multilayered chiral media and its applications," J. Electromang. Waves Appl., Vol. 7, No. 7, 1005-1027, 1993.
doi:10.1163/156939393X00165

23. Ren, W., "Dyadic Green’s functions and dipole radiations in layered chiral media," J. Appl., Phs., Vol. 75, No. 1, 30-35, 1994.
doi:10.1063/1.355850

24. Bhattacharyya, A. K., G. J. Burke, and E. K. Miller, "Modelling wire dipoles in an infinite chiral medium and vertically-oriented near a chiral half space," Micro. Opt. Tech. Lett., Vol. 5, No. 3, 101-107, 1992.
doi:10.1002/mop.4650050303

25. Burke, G. J., E. K. Miller, and A. K. Bhattacharyya, "Current on a long, thin wire in a chiral medium," IEEE Trans. Antennas Propag., Vol. 42, No. 6, 827-832, 1994.
doi:10.1109/8.301702

26. Bhattacharyya, A. K., G. J. Burke, and E. K. Miller, "Circular loop antenna in unbounded chiral medium: a moment-method solution," J. Electromang. Waves Appl., Vol. 6, No. 4, 431-444, 1992.
doi:10.1163/156939392X01237

27. Mahmoud, S. F., "Electromagnetic fields of a current loop above a chiral half space," J. Electromang. Waves Appl., Vol. 10, No. 3, 329-339, 1996.
doi:10.1163/156939396X00441

28. Viitanen, A. J., I. V. Lindell, and A. H. Sihvola, "Polarization correction of Luneburg lens with chiral medium," Micro. Opt. Tech. Lett., Vol. 3, No. 2, 62-66.
doi:10.1002/mop.4650030207

29. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 9, 1395-1397, 1998.
doi:10.1109/8.719989

30. Werner, D. H., "An exact integration procedure for vector potentials of thin circular loop antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 2, 157-165, 1996.
doi:10.1109/8.481642

31. Overfelt, P. L., "Near fields of the constant current thin circular loop antenna of arbitrary radius," IEEE Trans. Antennas Propag., Vol. 44, No. 2, 166-171, 1996.
doi:10.1109/8.481643

32. Li, L. W., M. S. Leong, P. S. Kooi, and T. S. Yao, "Exact solutions of electromagnetic fields in both near and far zones radiated by thin circular-loop antennas: a general representation," IEEE Trans. Antennas Propag., Vol. 45, No. 12, 1741-1748, 1997.
doi:10.1109/8.650191

33. Li, L. W., C. P. Lim, and M. S. Leong, "Method of moments analysis of electrically large circular-loop antennas: non-uniform currents," IEE Proc-Microw. Antennas Propag., Vol. 147, No. 1, 2000.


© Copyright 2014 EMW Publishing. All Rights Reserved