PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 30 > pp. 59-84

POLYNOMIAL OPERATORS AND GREEN FUNCTIONS

By I. V. Lindell, and F. Olyslager

Full Article PDF (373 KB)

Abstract:
Green functions corresponding to various polynomial partial differential operators of second, fourth and higher order are derived and the results are collected in tabular form for quick reference. The results and the methods suggested for their derivation are of importance in solving electromagnetic field problems associated with various linear (bi-anisotropic) media.

Citation: (See works that cites this article)
I. V. Lindell, and F. Olyslager, "Polynomial Operators and Green Functions," Progress In Electromagnetics Research, Vol. 30, 59-84, 2001.
doi:10.2528/PIER00031305
http://www.jpier.org/PIER/pier.php?paper=0003135

References:
1. Kong, J. A., Theory of Electromagnetic Waves, 15-16, Wiley, New York, 1975.

2. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd ed., University Press, Oxford, 1995.

3. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, 2nd ed., IEEE Press, New York, 1994.

4. Lindell, I. V. and W. S. Weiglhofer, "Green dyadic for a uniaxial bianisotropic medium," IEEE Trans. Antennas Propagat., Vol. 42, No. 7, 1013-1016, July 1994.
doi:10.1109/8.299606

5. Arfken, G., Mathematical Methods for Physicists, 3rd ed., 342, Academic Press, Boston, 1985.

6. Lindell, I. V. and F. Olyslager, "TE/TM decomposition of electromagnetic sources in a nonreciprocal anisotropic medium," IEE Proc., Microwaves, Ant., Propag., Vol. 145, No. 1, 109-115, Feb. 1998.
doi:10.1049/ip-map:19981625

7. Lindell, I. V. and F. Olyslager, "TE/TM decomposition of the Green dyadic in uniaxial anisotropic media," Electromagnetics, Vol. 18, 383-394, 1998.
doi:10.1080/02726349808908596

8. Lindell, I. V. and F. Olyslager, "Factorization of Helmholtz determinant operator for decomposable bi-anisotropic media," J. Electro. Waves Appl., Vol. 13, No. 4, 429-444, 1999.
doi:10.1163/156939399X00222

9. Jacoby, B. and F. Olyslager, "Asymptotic expansions for Green’s dyadics in bianisotropic media," Prog. Electro. Res., 12, J. A. Kong (Ed.), EMW Publishing, Cambridge, 1996.

10. Olyslager, F., Electromagnetic Waveguides and Transmission Lines, 128-130, Clarendon Press, Oxford, 1999.

11. Mei, K. K., "On the perturbational solution to the dyadic Green’s function of Maxwell’s equations in anisotropic media," IEEE Trans. Antennas Propagat., Vol. 19, 665-669, 1971.
doi:10.1109/TAP.1971.1140014

12. Lindell, I. V. and F. Olyslager, "Green dyadic for a class of nonreciprocal bi-anisotropic media," Micro. Opt. Tech. Lett., Vol. 19, No. 3, 216-221, 1998.
doi:10.1002/(SICI)1098-2760(19981020)19:3<216::AID-MOP13>3.0.CO;2-#

13. Magnus, W., F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin, 1966.
doi:10.1007/978-3-662-11761-3

14. Erdelyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi, The Bateman Project: Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York, 1954.

15. Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Elementary Functions, Gordon and Breach Science Publishers, New York, 1988.

16. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1965.


© Copyright 2014 EMW Publishing. All Rights Reserved