PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 31 > pp. 89-112

ANALYSIS OF ELECTROMAGNETIC WAVE SCATTERING BY AN ELECTRICALLY LARGE METALLIC GRATING USING WAVELET-BASED ALGEBRATIC MULTIGRID PRECONDITIONED CG METHOD

By R. S. Chen, D. G. Fang, K. F. Tsang, and E. K. N. Yung

Full Article PDF (645 KB)

Abstract:
An effective wavelet based multigrid preconditioned conjugate gradient method is developed to solve electromagnetic large matrix problem for millimeter wave scattering application. By using wavelet transformation we restrict the large matrix equation to a relative smaller matrix and which can be solved rapidly. The solution is prolonged as the new improvement for the conjugate gradient (CG) method. Numerical result shows that our developed wavelet based multigrid preconditioned CG method can reach large improvement of computational complexity. Due to the automaticity of wavelet transformation, this method is potential to be a block box solver without physical background.

Citation:
R. S. Chen, D. G. Fang, K. F. Tsang, and E. K. N. Yung, "Analysis of Electromagnetic Wave Scattering by an Electrically Large Metallic Grating Using Wavelet-Based Algebratic Multigrid Preconditioned Cg Method," Progress In Electromagnetics Research, Vol. 31, 89-112, 2001.
doi:10.2528/PIER00060101
http://www.jpier.org/PIER/pier.php?paper=0006011

References:
1. Coifman, R., V. Rohklin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian description," IEEE Antennas Propagat Mag., Vol. 35, 7-12, 1993.
doi:10.1109/74.250128

2. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans Antennas Propagat., Vol. 45, 1488-1493, 1997.
doi:10.1109/8.633855

3. Michelsen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans Antennas Propagat., Vol. 44, 1086-1093, 1996.
doi:10.1109/8.511816

4. Canning, F. X., "Improved impedance matrix localization method," IEEE Trans Antennas Propagat., Vol. 41, 659-667, 1993.
doi:10.1109/8.222285

5. Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee, "Fast Illinois solver code (FISC)," IEEE Antennas Propagat Mag., Vol. 40, 27-34, 1998.
doi:10.1109/74.706067

6. Sarkar, T. K. and E. Arvas, "On a class of finite step iterative methods (conjugate directions) for the solution of an operator equation arising in electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 33, No. 10, 1058-1066, Oct. 1985.
doi:10.1109/TAP.1985.1143493

7. Saad, Y., "Iterative methods for sparse linear systems,", PWS Publishing Company, Boston, 1995.

8. Chen, R. S., E. K. N. Yung, C. H. Chan, and D. G. Fang, "Application of preconditioned CG-FFT technique to method of lines for analysis of the infinite-plane metallic grating," Microwave and Optical Technology Letters, Vol. 24, No. 3, 170-175, Feb. 5, 2000.
doi:10.1002/(SICI)1098-2760(20000205)24:3<170::AID-MOP8>3.0.CO;2-S

9. Axelsson, O. and L. Yu. Kolotilina, "Preconditioned conjugate gradient methods,", Proceedings 1989, in Lecture Notes in Mathematics, Vol. 1457, Edited by A. Dold, B. Eckmann, and F. Takens, Springer-Verlag, 1990.

10. Kershaw, D. S., "The incomplete Cholesky-conjugate gradient method for the solution of systems of linear equations," J. Comput. Phys., Vol. 26, 43-65, 1978.
doi:10.1016/0021-9991(78)90098-0

11. Dupont, T., R. P. Kendall, and H. H. Rachford, "An approximate factorization procedure for solving self-adjoint elliptic difference equations," SIAM J., Numer. Anal., Vol. 5, No. 3, 559-573, 1968.
doi:10.1137/0705045

12. Ahn, C. H., W. C. Chew, J. S. Zhao, and E. Michielssen, "Numerical study of approximate inverse preconditioner for two-dimensional engine inlet problems," Electromagnetics, Journal of Electromagn. Waves Appl., Vol. 19, No. 1, 131-146, 1999.

13. Canning, F. X., "Diagonal preconditioners for the EFIE using a wavelet basis," IEEE Trans. Antennas Propagat., Vol. 44, 1239-1246, 1996.
doi:10.1109/8.535382

14. Yaghjian, A. D., "Banded matrix preconditioning for electric-field integral equations," IEEE APS Int. Symp. Dig., 1806-1809, Montreal, Canada, 1997.

15. Tsang, L., C. H. Chan, H. Sangani, A. Ishimaru, and P. Phu, "A banded matrix iterative approach to monte carlo simulations of large-scale random rough-surface scattering," Journal of Electromagn. Waves Appl., Vol. 7, No. 9, 1185-1200, 1993.
doi:10.1163/156939393X00200

16. Wei, C., N. Inagaki, and W. Di, "Dimension-descent technique for electromagnetic problems," IEE Proc. Microw. Antennas Propag., Vol. 144, No. 5, 372-376, Oct. 1997.
doi:10.1049/ip-map:19971336

17. Ooms, S. and D. De Zutter, "A new iterative diakoptic-based multilevel moments method for planar circuits," IEEE Trans. Microw. Theory and Tech., Vol. 46, No. 3, 280-291, Mar. 1998.
doi:10.1109/22.661716

18. Briggs, W. L. and V. E. Henson, "Wavelets and multigrid," SIAM J. Sci. Comput., Vol. 14, No. 2, 506-510, March 1993.
doi:10.1137/0914031

19. Xiang, Z. and Y. Lu, "An effective wavelet matrix transform approach for efficient solutions of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 45, 1205-1213, 1997.
doi:10.1109/8.611238

20. Wang, G., R. W. Dutton, and J. Hou, "A fast wavelet multigrid algorithm for solution of electromagnetic integral equations," Microwave and Optical Technology Letters, Vol. 24, No. 2, 86-91, Jan. 2000.
doi:10.1002/(SICI)1098-2760(20000120)24:2<86::AID-MOP3>3.0.CO;2-B

21. Mallat, S., "A theory for multi-resolution signal decomposition: The wavelet transform," IEEE Trans. Pattern and Mech. Intel., Vol. 11, No. 7, 674-693, 1989.
doi:10.1109/34.192463

22. Daubechies, I., "Orthonormal bases of compactly supported wavelets," Commun. Pure and Appl. Math., Vol. 41, 909-996, 1988.
doi:10.1002/cpa.3160410705

23. Beylkin, G., R. Coifman, and V. Rokhlin, "Fast wavelet transforms and numerical algorithms I," Commun. Pure Appl. Math., Vol. 44, 141-183, 1991.
doi:10.1002/cpa.3160440202

24. Uchida, K., T. Noda, and T. Matsumaga, "Spectral domain analysis of electromagnetics wave scattering by infinite plane metallic grating," IEEE Trans. Antennas and Propagat., Vol. 35, No. 1, 46-52, 1987.
doi:10.1109/TAP.1987.1143973


© Copyright 2014 EMW Publishing. All Rights Reserved