PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 31 > pp. 1-30

FINITE DIFFERENCE TIME DOMAIN (FDTD) IMPEDANCE BOUNDARY CONDITION FOR THIN FINITE CONDUCTING SHEETS

By J. J. Akerson, M. A. Tassoudji, Y. E. Yang, and J. A. Kong

Full Article PDF (453 KB)

Abstract:
A new Impedance Boundary Condition (IBC) for two dimensional Finite Difference Time Domain simulations containing thin, good conductor sheets is presented. The IBC uses a recursive convolution scheme based on approximating the conductor's impedance as a sum of exponentials. The effects of FDTD parameters such as grid size and time step on simulation accuracy are presented. The IBC verification is performed by comparing the quality factors of rectangular resonant structures determined by the FDTD simulation and analytical methods. The IBC is shown to accurately model the conductor loss over a wide frequency range.

Citation:
J. J. Akerson, M. A. Tassoudji, Y. E. Yang, and J. A. Kong, "Finite Difference Time Domain (FDTD) Impedance Boundary Condition for Thin Finite Conducting Sheets," Progress In Electromagnetics Research, Vol. 31, 1-30, 2001.
doi:10.2528/PIER00070101
http://www.jpier.org/PIER/pier.php?paper=0007011

References:
1. Choi, D. H. and W. J. R. Hoefer, "A graded mesh FD-TD algorithm for eigenvalue problems," 17th European Microwave Conference, 413-417, 1987.

2. Kim, I. S. and W. J. R. Hoefer, "A local mesh refinement algorithm for the time domain-finite difference method using Maxwell’s curl equations," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 6, 812-815, 1990.
doi:10.1109/22.130985

3. Zivanovic, S. S., K. S. Yee, and K. K. Mei, "A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 471-479, 1991.
doi:10.1109/22.75289

4. Beggs, J. H., R. J. Luebbers, K. S. Kunz, and K. S. Yee, "Wide-band finite difference time domain implementation of surface impedance boundary conditions for good conductors," IEEE Antennas and Propagat. Soc. Int. Symposium, Vol. 1, 406-409, London, Ontario, 1991.

5. Lee, J.-F., R. Palandech, and R. Mittra, "Modeling three-dimensional discontinuities in waveguides using non-orthogonal FDTD algorithm," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 346-352, 1992.
doi:10.1109/22.120108

6. Wang, B. Z., "Time-domain modeling of the impedance boundary condition for an oblique incident parallel-polarization plane wave," Microwave Opt. Technol. Lett., Vol. 7, No. 1, 19-22, 1994.
doi:10.1002/mop.4650070109

7. Oh, K. S. and J. E. Schutt-Aine, "An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method," IEEE Trans. Antennas Propagat., Vol. 43, No. 7, 660-666, 1995.
doi:10.1109/8.391136

8. Luebbers, R. J., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116

9. Chamberlin, K. and L. Gordon, "Deriving a synthetic conductivity to enable accurate prediction of losses in good conductors using FDTD," 10th Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 46-52, Monterey, CA, March 1994.

10. Lee, C. F., R. T. Shin, and J. A. Kong, "Time domain modeling of impedance boundary condition," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1847-1850, 1992.
doi:10.1109/22.156615

11. Wang, B. Z., "Time-domain modeling of the impedance boundary condition for an oblique incident perpendicular-polarization plane wave," Microwave Opt. Technol. Lett., Vol. 7, No. 8, 355-359, 1994.
doi:10.1002/mop.4650070806

12. Abramovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, NY, 1965.

13. Staelin, D. H., J. A. Kong, and A. W. Morgenthaler, Electromagnetic Waves, Prentice Hall, Eaglewood Cliffs, NJ, 1994.

14. Johnson, D. E., J. L. Hilburn, and J. R. Johnson, Basic Circuit Analysis, Prentice-Hall, Eaglewood Cliffs, NJ, 1978.


© Copyright 2014 EMW Publishing. All Rights Reserved