Vol. 31
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Microwave Emission Model for Wet Snow by Using Radiative Transfer and Strong Fluctuation Theory
By
, Vol. 31, 291-310, 2001
Abstract
This study is concerned with the development of a model to describe microwave emission from terrain covered by wet snow. The model is based on the radiative transfer theory and the strong fluctuation theory. Wet snow is treated in the model as a mixture of dry snow and water inclusions. The shape of the water inclusions is taken into account. The effective permittivity is calculated by using the two-phase strong fluctuation theory model with nonsymmetrical inclusions. The phase matrix and the extinction coefficient of wet snow for an anisotropic correlation function with azimuth symmetric are used. The vector radiative transfer equation for a layer of a random medium was solved by using Gaussian quadrature and eigen analysis. The model behaviour is illustrated by using typical parameters encountered in microwave remote sensing of wet snow. Comparisons with emissivity data at 11, 21 and 35 GHz are made. It is shown that the model predictions fit the experimental data.
Citation
H. Wang, Ali Arslan, Jouni Pulliainen, and M. Hallikainen, "Microwave Emission Model for Wet Snow by Using Radiative Transfer and Strong Fluctuation Theory," , Vol. 31, 291-310, 2001.
doi:10.2528/PIER00071702
References

1. Pulliainen, J., J. Grandell, and M. Hallikainen, "HUT snow emission mode and its applicability to snow water equivalent retrieval," IEEE Trans. Geosci. Remote Sensing, Vol. 37, 1378-1390, 1999.
doi:10.1109/36.763302

2. Wiesman, A. and C. Matzler, "Microwave emission model of layered snowpacks," Remote Sensing of Environment, Vol. 70, 307-316, 1999.
doi:10.1016/S0034-4257(99)00046-2

3. Stogryn, A., "A study of the microwave brightness temperature of snow from the point of view of strong fluctuation theory," IEEE Trans. Geosci. Remote Sensing, Vol. 24, 220-231, 1986.
doi:10.1109/TGRS.1986.289641

4. Jin, Y. Q., "The radiative transfer equation for stronglyfluctuation continuous random media," J. Quant. Spectrosc. Radiat. Transfer., Vol. 42, 529-537, 1989.
doi:10.1016/0022-4073(89)90043-5

5. Wang, H., J. Pulliainen, and M. Hallikainen, "Application of strong fluctuation theory to microwave emission from dry snow," J. Electrom. Waves and Appl., Vol. 14, 827–828, 2000 (abstract), and Progress In Electromagnetic Research, Vol. 29, 39-55, 2000 (complete text).

6. Kong, J. A., R. Shin, J. Shiue, and L. Tsang, "Theory and experiment for passive microwave remote sensing of snowpacks," J. Geophys. Res., Vol. 48, No. B10, 5669-5673, 1979.
doi:10.1029/JB084iB10p05669

7. Chang, A., P. Gloersen, T. Schmugge, T. Wilheit, and H. Zwally, "Microwave emission from snow and glacier ice," J. Glaciology, Vol. 16, 23-39, 1976.
doi:10.1017/S0022143000031415

8. Boyarskij, D. A., V. V. Dmitriev, N. I. Kleeorin, and V. G. Mirovskij, "Theoretical and experimental studies of snow covers microwave emissivity," J. Electrom. Waves and Appl., Vol. 7, 959-970, 1993.
doi:10.1163/156939393X00138

9. Tsang, L., "Passive remote sensing of dense nonteneous media," J. Electrom. Waves and Appl., Vol. 1, 159-173, 1987.

10. Tsang, L., Z. Chen, S. Oh, R. J. Marks II, and A. T. C. Chang, "Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model," IEEE Trans. Geosci. Remote Sensing, Vol. 30, 1015-1024, 1992.
doi:10.1109/36.175336

11. Tiuri, M. E., "Theoretical and experimental studies of microwave emission signatures of snow," IEEE Trans. Geosci. Remote Sensing, Vol. 20, 51-57, 1982.
doi:10.1109/TGRS.1982.4307520

12. Boyarskij, D. A. and V. S. Etkin, "Two flow model of wet snow microwave emissivity," Proceedings of IGARSS94 Symposium, 2068-2070, 1994.

13. Weise, T., "Radiometric and structural measurements of snow,", Ph.D. Thesis, Institute of Applied Physics, University of Bern, CH-3012Bern, Switzerland, 1996.

14. Wiesmann, A., T. Strozzi, and T. Weise, "Passive microwave signature catalogue of snow covers at 11, 21, 35, 48 and 94 GHz," IAP Research Report, No. 96–8, University of Bern, Switzerland, 1996.

15. Tsang, L. and J. A. Kong, "Scattering of electromagnetic waves for random media with strong permittivity fluctuations," Radio Sci., Vol. 16, 303-320, 1981.
doi:10.1029/RS016i003p00303

16. Hallikainen, M., F. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in 3 to 37 GHz range," IEEE Trans. on Antennas and Propagation, Vol. 34, 1329-1340, 1986.
doi:10.1109/TAP.1986.1143757

17. Jin, Y. Q. and J. A. Kong, "Strong fluctuation theory for electromagnetic wave scattering by a layer of random discrete scatters," J. Applied Physics, Vol. 55, 1364-1369, 1984.
doi:10.1063/1.333226

18. Arslan, A. N., H. Wang, J. Pulliainen, and M. Hallikainen, "Effective permittivity of wet snow by using strong fluctuation theory," Submitted for publication in J. Electrom. Waves and Appl., 2000.

19. Nghiem, S. V., R. Kwok, J. A. Kong, and R. T. Shin, "A model with ellipsoidal scatterers for polarimetric remote sensing of anisotropic layered media," Radio Sci., Vol. 28, 687-703, 1993.
doi:10.1029/93RS01605

20. Nghiem, S. V., R. Kwok, S. H. Yueh, J. A. Kong, C. C. Hsu, M. A. Tassoudji, and R. T. Shin, "Polarimetric scattering from layered media with multiple species of scatterers," Radio Sci., Vol. 30, 835-852, 1995.
doi:10.1029/95RS01247

21. Nghiem, S. V., R. Kwok, J. A. Kong, R. T. Shin, S. A. Arcone, and A. J. Gow, "An electrothermodynamic model with distributed properties for effective permittivity of sea ice," Radio Sci., Vol. 31, 297-311, 1996.
doi:10.1029/95RS03429

22. Hallikainen, M., F. Ulaby, and T. Deventer, "Extinction behaviour of dry snow in the 18- to 90-GHz range," IEEE Trans. Geosci. Remote Sensing, Vol. 25, 737-745, 1987.
doi:10.1109/TGRS.1987.289743

23. Tsang, L. and J. A. Kong, "Thermal microwave emission from a three-layer random medium with three-dimensional variations," IEEE Trans. Geosci. Remote Sensing, Vol. 18, 212-216, 1980.
doi:10.1109/TGRS.1980.350275

24. Stogryn, A., "The bilocal approximation for the effective dielectric constant of an isotropic random medium," IEEE Trans. on Antennas and Propagation, Vol. 32, 517-520, 1984.
doi:10.1109/TAP.1984.1143344

25. Wang, H., J. Pulliainen, and M. Hallikainen, "Effective permittivity of dry snow in the 18 to 90 GHz range," J. Electrom. Waves and Appl., Vol. 13, 1391-1392, 1999 (abstract), and Progress In Electromagnetic Research, PIER 24, 119–133, 1999 (complete text).

26. Hallikainen, M., F. Ulaby, M. Dobson, M. El-Rayes, and L. Wu, "Microwave dielectric behaviour of wet soil — Part I: empirical equations and experimental observations," IEEE Trans. Geosci. Remote Sensing, Vol. 23, No. 1, 25-34, 1985.
doi:10.1109/TGRS.1985.289497

27. Hufford, G., "A model for the complex permittivity of ice at frequencies below 1 THz," Int. J. IR and MM Waves, Vol. 12, No. 7, 677-682, 1991.
doi:10.1007/BF01008898

28. Mtzler, C. and U. Wegmuller, "Dielectric properties of freshwater ice at microwave frequencies," J. Phys. D: Appl. Phys., Vol. 20, 1623-1630, 1987.
doi:10.1088/0022-3727/20/12/013

29. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing, Vol. III, 2020–2022, Artech House, Inc., Norwood, MA 02062, 1986.