PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 31 > pp. 291-310

MICROWAVE EMISSION MODEL FOR WET SNOW BY USING RADIATIVE TRANSFER AND STRONG FLUCTUATION THEORY

By H. Wang, A. N. Arslan, J. Pulliainen, and M. Hallikainen

Full Article PDF (367 KB)

Abstract:
This study is concerned with the development of a model to describe microwave emission from terrain covered by wet snow. The model is based on the radiative transfer theory and the strong fluctuation theory. Wet snow is treated in the model as a mixture of dry snow and water inclusions. The shape of the water inclusions is taken into account. The effective permittivity is calculated by using the two-phase strong fluctuation theory model with nonsymmetrical inclusions. The phase matrix and the extinction coefficient of wet snow for an anisotropic correlation function with azimuth symmetric are used. The vector radiative transfer equation for a layer of a random medium was solved by using Gaussian quadrature and eigen analysis. The model behaviour is illustrated by using typical parameters encountered in microwave remote sensing of wet snow. Comparisons with emissivity data at 11, 21 and 35 GHz are made. It is shown that the model predictions fit the experimental data.

Citation:
H. Wang, A. N. Arslan, J. Pulliainen, and M. Hallikainen, "Microwave Emission Model for Wet Snow by Using Radiative Transfer and Strong Fluctuation Theory," Progress In Electromagnetics Research, Vol. 31, 291-310, 2001.
doi:10.2528/PIER00071702
http://www.jpier.org/PIER/pier.php?paper=0007172

References:
1. Pulliainen, J., J. Grandell, and M. Hallikainen, "HUT snow emission mode and its applicability to snow water equivalent retrieval," IEEE Trans. Geosci. Remote Sensing, Vol. 37, 1378-1390, 1999.
doi:10.1109/36.763302

2. Wiesman, A. and C. Matzler, "Microwave emission model of layered snowpacks," Remote Sensing of Environment, Vol. 70, 307-316, 1999.
doi:10.1016/S0034-4257(99)00046-2

3. Stogryn, A., "A study of the microwave brightness temperature of snow from the point of view of strong fluctuation theory," IEEE Trans. Geosci. Remote Sensing, Vol. 24, 220-231, 1986.
doi:10.1109/TGRS.1986.289641

4. Jin, Y. Q., "The radiative transfer equation for stronglyfluctuation continuous random media," J. Quant. Spectrosc. Radiat. Transfer., Vol. 42, 529-537, 1989.
doi:10.1016/0022-4073(89)90043-5

5. Wang, H., J. Pulliainen, and M. Hallikainen, "Application of strong fluctuation theory to microwave emission from dry snow," J. Electrom. Waves and Appl., Vol. 14, 827–828, 2000 (abstract), and Progress In Electromagnetic Research, Vol. 29, 39-55, 2000 (complete text).

6. Kong, J. A., R. Shin, J. Shiue, and L. Tsang, "Theory and experiment for passive microwave remote sensing of snowpacks," J. Geophys. Res., Vol. 48, No. B10, 5669-5673, 1979.
doi:10.1029/JB084iB10p05669

7. Chang, A., P. Gloersen, T. Schmugge, T. Wilheit, and H. Zwally, "Microwave emission from snow and glacier ice," J. Glaciology, Vol. 16, 23-39, 1976.
doi:10.1017/S0022143000031415

8. Boyarskij, D. A., V. V. Dmitriev, N. I. Kleeorin, and V. G. Mirovskij, "Theoretical and experimental studies of snow covers microwave emissivity," J. Electrom. Waves and Appl., Vol. 7, 959-970, 1993.
doi:10.1163/156939393X00138

9. Tsang, L., "Passive remote sensing of dense nonteneous media," J. Electrom. Waves and Appl., Vol. 1, 159-173, 1987.

10. Tsang, L., Z. Chen, S. Oh, R. J. Marks II, and A. T. C. Chang, "Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model," IEEE Trans. Geosci. Remote Sensing, Vol. 30, 1015-1024, 1992.
doi:10.1109/36.175336

11. Tiuri, M. E., "Theoretical and experimental studies of microwave emission signatures of snow," IEEE Trans. Geosci. Remote Sensing, Vol. 20, 51-57, 1982.
doi:10.1109/TGRS.1982.4307520

12. Boyarskij, D. A. and V. S. Etkin, "Two flow model of wet snow microwave emissivity," Proceedings of IGARSS94 Symposium, 2068-2070, 1994.

13. Weise, T., "Radiometric and structural measurements of snow,", Ph.D. Thesis, Institute of Applied Physics, University of Bern, CH-3012Bern, Switzerland, 1996.

14. Wiesmann, A., T. Strozzi, and T. Weise, "Passive microwave signature catalogue of snow covers at 11, 21, 35, 48 and 94 GHz," IAP Research Report, No. 96–8, University of Bern, Switzerland, 1996.

15. Tsang, L. and J. A. Kong, "Scattering of electromagnetic waves for random media with strong permittivity fluctuations," Radio Sci., Vol. 16, 303-320, 1981.
doi:10.1029/RS016i003p00303

16. Hallikainen, M., F. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in 3 to 37 GHz range," IEEE Trans. on Antennas and Propagation, Vol. 34, 1329-1340, 1986.
doi:10.1109/TAP.1986.1143757

17. Jin, Y. Q. and J. A. Kong, "Strong fluctuation theory for electromagnetic wave scattering by a layer of random discrete scatters," J. Applied Physics, Vol. 55, 1364-1369, 1984.
doi:10.1063/1.333226

18. Arslan, A. N., H. Wang, J. Pulliainen, and M. Hallikainen, "Effective permittivity of wet snow by using strong fluctuation theory," Submitted for publication in J. Electrom. Waves and Appl., 2000.

19. Nghiem, S. V., R. Kwok, J. A. Kong, and R. T. Shin, "A model with ellipsoidal scatterers for polarimetric remote sensing of anisotropic layered media," Radio Sci., Vol. 28, 687-703, 1993.
doi:10.1029/93RS01605

20. Nghiem, S. V., R. Kwok, S. H. Yueh, J. A. Kong, C. C. Hsu, M. A. Tassoudji, and R. T. Shin, "Polarimetric scattering from layered media with multiple species of scatterers," Radio Sci., Vol. 30, 835-852, 1995.
doi:10.1029/95RS01247

21. Nghiem, S. V., R. Kwok, J. A. Kong, R. T. Shin, S. A. Arcone, and A. J. Gow, "An electrothermodynamic model with distributed properties for effective permittivity of sea ice," Radio Sci., Vol. 31, 297-311, 1996.
doi:10.1029/95RS03429

22. Hallikainen, M., F. Ulaby, and T. Deventer, "Extinction behaviour of dry snow in the 18- to 90-GHz range," IEEE Trans. Geosci. Remote Sensing, Vol. 25, 737-745, 1987.
doi:10.1109/TGRS.1987.289743

23. Tsang, L. and J. A. Kong, "Thermal microwave emission from a three-layer random medium with three-dimensional variations," IEEE Trans. Geosci. Remote Sensing, Vol. 18, 212-216, 1980.
doi:10.1109/TGRS.1980.350275

24. Stogryn, A., "The bilocal approximation for the effective dielectric constant of an isotropic random medium," IEEE Trans. on Antennas and Propagation, Vol. 32, 517-520, 1984.
doi:10.1109/TAP.1984.1143344

25. Wang, H., J. Pulliainen, and M. Hallikainen, "Effective permittivity of dry snow in the 18 to 90 GHz range," J. Electrom. Waves and Appl., Vol. 13, 1391-1392, 1999 (abstract), and Progress In Electromagnetic Research, PIER 24, 119–133, 1999 (complete text).

26. Hallikainen, M., F. Ulaby, M. Dobson, M. El-Rayes, and L. Wu, "Microwave dielectric behaviour of wet soil — Part I: empirical equations and experimental observations," IEEE Trans. Geosci. Remote Sensing, Vol. 23, No. 1, 25-34, 1985.
doi:10.1109/TGRS.1985.289497

27. Hufford, G., "A model for the complex permittivity of ice at frequencies below 1 THz," Int. J. IR and MM Waves, Vol. 12, No. 7, 677-682, 1991.
doi:10.1007/BF01008898

28. Mtzler, C. and U. Wegmuller, "Dielectric properties of freshwater ice at microwave frequencies," J. Phys. D: Appl. Phys., Vol. 20, 1623-1630, 1987.
doi:10.1088/0022-3727/20/12/013

29. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing, Vol. III, 2020–2022, Artech House, Inc., Norwood, MA 02062, 1986.


© Copyright 2014 EMW Publishing. All Rights Reserved