PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 151-169

DATA STRUCTURES FOR GEOMETRIC AND TOPOLOGICAL ASPECTS OF FINITE ELEMENT ALGORITHMS

By P. W. Gross and P. R. Kotiuga

Full Article PDF (356 KB)

Abstract:
This paper uses simplicial complexes and simplicial (co)homology theory to expose a foundation for data structures for tetrahedral finite element meshes. Identifying tetrahedral meshes with simplicial complexes leads, by means of Whitney forms, to the connection between simplicial cochains and fields in the region modeled by the mesh. Furthermore, lumped field parameters are tied to matrices associated with simplicial (co)homology groups. The data structures described here are sparse, and the computational complexity of constructing them is O(n) where n is the number of vertices in the finite element mesh. Non-tetrahedral meshes can be handled by an equivalent theory. These considerations lead to a discrete form of Poincar´e duality which is a powerful tool for developing algorithms for topological computations on finite element meshes. This duality emerges naturally in the data structures. We indicate some practical applications of both data structures and underlying theory.

Citation: (See works that cites this article)
P. W. Gross and P. R. Kotiuga, "Data Structures for Geometric and Topological Aspects of Finite Element Algorithms," Progress In Electromagnetics Research, Vol. 32, 151-169, 2001.
doi:10.2528/PIER00080106
http://www.jpier.org/PIER/pier.php?paper=00080106

References:
1. Balabanian, N. and T. A. Bickart, Electrical Network Theory, 80, John Wiley and Sons, New York, 1969.

2. Bamberg, P. and S. Sternberg, A Course in Mathematics for Students of Physics: 2,, Ch. 12, Cambridge U. Press, NY, 1990.

3. Bossavit, A., Computational Electromagnetism,V ariational Formulations,Edge Elements,Complementarity,, Academic Press, Boston, 1997.

4. Brisson, E., "Representing geometric structures in d dimensions: Topology and order," Discrete and Computational Geometry, Vol. 9, 387-426, 1993.
doi:10.1007/BF02189330

5. Brown, M. L., "Scalar potentials in multiply connected regions," Int. J. Numer. Meth. Eng., Vol. 20, 665-680, 1984.
doi:10.1002/nme.1620200406

6. Chammas, P. and P. R. Kotiuga, "Sparsity vis a vis Lanczos methods for discrete helicity functionals," Proc. of the Third Int. Workshop on Electric and Magnetic Fields, A. Nicolet and R. Belmans (eds.), 1996.

7. Croom, F. H., Basic Concepts of Algebraic Topology, Chaps. 2, 7.3, 4.5, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4684-9475-4

8. Dodziuk, J., "Combinatorial and continuous hodge theories," Bull. AMS, Vol. 80, 1014-1016, 1974.
doi:10.1090/S0002-9904-1974-13615-3

9. Dodziuk, J., "Finite-difference approach to the hodge theory of harmonic forms," Am. J. Math., Vol. 98, 79-104, 1976.
doi:10.2307/2373615

10. Eilenberg, S. and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.
doi:10.1515/9781400877492

11. Gross, P. W. and P. R. Kotiuga, "Finite element-based algorithms to make cuts for magnetic scalar potentials: Topological constraints and computational complexity,", this volume.

12. Gross, P. W. and P. R. Kotiuga, "A challenge for magnetic scalar potential formulations of 3-d eddy current problems: Multiply connected cuts in multiply connected regions which necessarily leave the cut complement multiply connected," Electric and Magnetic Fields: From Numerical Models to Industrial Applications, A. Nicolet and R. Belmans (eds.), 1–20, New York, 1995. Proc. of the Second Int. Workshop on Electric and Magnetic Fields.

13. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. thesis, 123, McGill University, Montreal, 1984.

14. Kotiuga, P. R., "An algorithm to make cuts for scalar potentials in tetrahedral meshes based on the finite element method," IEEE Trans. Magn., Vol. 25, 4129-4131, 1989.
doi:10.1109/20.42544

15. Kotiuga, P. R., "Helicity functionals and metric invariance in three dimensions," IEEE Trans. Magn., Vol. 25, 2813-2815, 1989.
doi:10.1109/20.34293

16. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, 5815-5817, 1990.
doi:10.1063/1.345973

17. Kotiuga, P. R., "Topological duality in three-dimensional eddycurrent problems and its role in computer-aided problem formulation," J. Appl. Phys., Vol. 67, 4717-4719, 1990.
doi:10.1063/1.344812

18. Kotiuga, P. R., "Essential arithmetic for evaluating three dimensional vector finite element interpolation schemes," IEEE Trans. Magn., Vol. 27, 5208-5210, 1991.
doi:10.1109/20.278789

19. Kron, G., "Basic concepts of multidimensional space filters," AIEE Trans., Vol. 78, 554-561, 1959.

20. Maxwell, J. C., A Treatise on Electricity and Magnetism (1891), Chap. 1, Art. 18–22, Dover, New York, 1954.

21. Muller, W., "Analytic torsion and r-torsion of riemannian manifolds," Advances in Mathematics, Vol. 28, 233-305, 1978.
doi:10.1016/0001-8708(78)90116-0

22. Munkres, J. R., Elements of Algebraic Topology, 377-380, Addison-Wesley, Reading, MA, 1984.

23. Rotman, J. J., An Introduction to Algebraic Topology, Springer- Verlag, NY, 1988.
doi:10.1007/978-1-4612-4576-6

24. Silvester, P. and R. Ferrari, Finite Elements for Electrical Engineers, 2nd Ed., Cambridge U. Press, NY, 1990.

25. Whitney, H., "On matrices of integers and combinatorial topology," Duke Math. J., Vol. 3, 35-45, 1937.
doi:10.1215/S0012-7094-37-00304-1

26. Whitney, H., "r-Dimensional integration in n-space," Proc. of the Int. Congress of Mathematicians, Vol. 1, 1950.

27. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, New Jersey, 1957.
doi:10.1515/9781400877577


© Copyright 2014 EMW Publishing. All Rights Reserved