Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 171-188


By F. L. Teixeira

Full Article PDF (293 KB)

Aspects of the geometric discretization of electromagnetic fields on simplicial lattices are considered. First, the convenience of the use of exterior differential forms to represent the field quantities through their natural role as duals (cochains) of the geometric constituents of the lattice (chains = nodes, edges, faces, volumes) is briefly reviewed. Then, the use of the barycentric subdivision to decompose the (ordinary) simplicial primal lattice together with the (twisted) non-simplicial barycentric dual lattice into simplicial elements is considered. Finally, the construction of lattice Hodge operators by using Whitney maps on the first barycentric subdivision is described. The objective is to arrive at a discrete formulation of electromagnetic fields on general lattices which better adheres to the underlying physics.

Citation: (See works that cites this article)
F. L. Teixeira, "Geometric Aspects of the Simplicial Discretization of Maxwell's Equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.

1. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, 1957.

5. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, New York, 1973.

3. Burke, W. L., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.

4. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Am. J. Math., Vol. 98, No. 1, 79-104, 1976.

5. Weingarten, D., "Geometric formulation of electrodynamics and general relativity in discrete space-time," J. Math. Phys., Vol. 18, No. 1, 165-170, 1977.

6. Muller, W., "Analytic torsion and R-torsion of Riemannian manifolds," Advances in Math., Vol. 28, 233-305, 1978.

7. Tonti, E., "On the mathematical strucuture of a large class of physical theories," Rend. Acc. Lincei, Vol. 52, 48-56, 1972.

8. Tonti, E., "A mathematical model for physical theories," Rend. Acc. Lincei, Vol. 52, 175-181, 1972.

9. Tonti, E., "The algebraic-topological structure of physical theories," Proc. Conf. on Symmetry, Similarity, and Group Theoretic Meth. in Mechanics, 441-467, Calgary, Canada, 1974.

10. Tonti, E., "On the geometrical structure of electromagnetism," Gravitation, Electromagnetism, and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, G. Ferrarese (ed.), 281–308, Pitagora Editrice Bologna, 1995.

11. Tonti, E., "Algebraic topology and computational electromagnetism," Proc. Fourth Int. Workshop on the Electric and Magnetic Fields: from Num. Meth. to Ind. Applicat., 284-294, Marseille, France, 1998.

12. Ohkuro, S., "Differential forms and Maxwell’s field: An application of harmonic integrals," J. Math. Phys., Vol. 11, No. 6, 2005-2012, 1970.

13. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.

14. Kheyfets, A. and W. A. Miller, "The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.

15. Bossavit, A., "Whitney forms: a new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988.

16. Bossavit, A., "Simplicial finite elements for scattering problems in electromagnetism," Comp. Meth. Appl. Mech. Engineering,, Vol. 76, 299-316, 1989.

17. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. Thesis, Department of Electrical Engineering, McGill University, Montreal, Canada, 1984.

18. Kotiuga, P. R., "Variational principles for three-dimensional magnetostatics based on helicity," J. Appl. Phys., Vol. 63, No. 8, 3360-3362, 1988.

19. Kotiuga, P. R., "Helicity functionals and metric invariance in three dimensions," IEEE Trans. Magn., Vol. 25, No. 4, 2813-2815, 1989.

20. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, No. 9, 5815-5817, 1990.

21. Kotiuga, P. R., "Metric dependent aspects of inverse problems and functionals based on helicity," J. Appl. Phys., Vol. 73, No. 10, 5437-5439, 1993.

22. Hammond, P. and D. Baldomir, "Dual energy methods in electromagnetism using tubes and slices," IEEE Proc. A, Vol. 135, No. 3, 167-172, 1988.

23. Bossavit, A., "Differential forms and the computation of fields and forces in electromagnetism," Eur. J. Mech. B, Vol. 10, No. 5, 474-488, 1991.

24. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, New York, 1998.

25. Kettunen, L., K. Forsman, and A. Bossavit, "Discrete spaces for Div and Curl-free fields," IEEE Trans. Magn., Vol. 34, No. 5, 2551-2554, 1998.

26. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.

27. Bossavit, A., "A posteriori error bounds by ‘local corrections’ using the dual mesh," IEEE Trans. Magn., Vol. 35, No. 3, 1350-1353, 1999.

28. Bossavit, A., "On the notion of anisotropy of constitutive laws: Some implications of the ‘Hodge implies metric’ result,", private communication.

29. Becher, P. and H. Joos, "The Dirac-Kahler equation and fermions on the lattice," Z. Phys. C, Vol. 15, 343-365, 1982.

30. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Electromagnetic boundary conditions and differential forms," IEE Proc., Microw. Ant. Prop., Vol. 142, 326-332, 1995.

31. Jancewicz, B., "A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisotropic media," Ann. Phys., Vol. 245, 227-274, 1996.

32. Mattiussi, C., "An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology," J. Comp. Phys., Vol. 133, 289-309, 1997.

33. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching eletromagnetic field theory using differential forms," IEEE Trans. Edu., Vol. 40, No. 1, 53-68, 1997.

34. Warnick, K. F. and D. V. Arnold, "Green forms for anisotropic, inhomogeneous media," J. Electromagn. Waves Appl., Vol. 11, No. 8, 1145-1164, 1997.

35. Arkko, A., T. Tarhasaari, and L. Kettunen, "A time domain method for high frequency problems exploring the Whitney complex," Proc. 14th. Ann. Rev. Prog. Appl. Comp. Electromag. Soc., 121-126, Monterey, CA, 1998.

36. Kraus, C. and R. Ziolkowsky, "Topological and geometrical considerations for Maxwell’s equations on unstructured meshes," Proc. URSI Meeting, 714, Montreal, Canada, 1997.

37. Hiptmair, R., "Canonical construction of finite elements," Math. Computat., Vol. 68, 1325-1346, 1999.

38. Hiptmair, R., "Discrete Hodge operators,", Tech. Rep. 126, SFB 382, University of Tubingen, Tubingen, Germany, 1999.

39. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," J. Electromagn. Waves Applicat., Vol. 13, No. 5, 665-686, 1999.

40. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.

41. Albeverio, S. and B. Zegarlinski, "Construction of convergent simplicial approximations of quantum field on Riemannian manifolds ," Comm. Math. Phys., Vol. 132, 39-71, 1990.

42. Albeverio, S. and J. Schafer, "Abelian Chern-Simons theory and linking numbers via oscilatory integrals," J. Mat. Phys., Vol. 36, No. 5, 2157-2169, 1995.

43. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories,", eprint http://arxiv.org/archive/hepth/961209, 1996.

44. Adams, D. H., "A double discretization of Abelian Chern-Simons theory," Phys. Rev. Lett., Vol. 78, No. 22, 4155-4158, 1997.

45. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.

46. Kojima, T., Y. Saito, and R. Dang, "Dual mesh approach for semiconductor device simulator," IEEE Trans. Magn., Vol. 25, No. 4, 2953-2955, 1989.

47. Bossavit, A., "How weak is the ‘weak solution’ in finite element methods," IEEE Trans. Magn., Vol. 34, No. 5, 2429-2432, 1998.

48. Bossavit, A. and L. Kettunen, "Yee-schemes on a tetrahedral mesh, with diagonal lumping," Int. J. Num. Model., Vol. 12, 129-142, 1999.

49. Witten, E., "Topological quantum field theory," Comm. Math. Phys., Vol. 117, 353-386, 1988.

50. Fukuma, M., S. Hosono, and H. Kawai, "Lattice topological field theory in two dimensions," Comm. Math. Phys., Vol. 161, 157-175, 1994.

51. Chung, S.-W., M. Fukuma, and A. Shapere, "Structure of topological lattice field theory in three dimensions," Int. J. Mod. Phys., Vol. 9, No. 8, 1305-1360, 1994.

52. da Cunha, B. G. C. and P. T. Sobrinho, "Quasitopological field theories in two dimensions as soluble models," Int. J. Mod. Phys., Vol. 13, No. 21, 3667-3689, 1998.

53. Felder, G., J, Frolich, J. Fuchs, and C. Schweigert, "Conformal boundary conditions and three-dimensional topological field theory," Phys. Rev. Lett., Vol. 84, No. 8, 1659-1662, 2000.

54. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Propagat., Vol. 14, 302-307, 1966.

55. Taflove, A., "Computational Electrodynamics: The Finite- Difference Time-Domain Method," Artech House, Boston, 1995.

56. Weiland, T., "On the numerical solutions of Maxwell’s equations and applications in the field of accelerator physics," Particle Accelerators, Vol. 15, 245-292, 1984.

57. Weiland, T., "Time domain electromagnetic field computations with finite difference methods," Int. J. Num. Model., Vol. 9, 295-319, 1996.

58. Chew, W. C., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, No. 10, 4843-4850, 1994.

59. Radhakrishnan, K. and W. C. Chew, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1764-1771, 1999.

60. Mattiussi, C., "Finite volume, finite difference, and finite element methods for physical field problems," Advancing Imaging Electron. Phys., Vol. 113, 1-146, 2000.

61. McCartin, B. J. and J. F. DiCello, "Three dimensional finite difference frequency domain scattering computation using the control region approximation," IEEE Trans. Magn., Vol. 25, No. 4, 3092-3094, 1989.

62. Rappaport, C. M. and E. B. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Trans. Magn., Vol. 27, No. 5, 3848-3851, 1991.

63. Hyman, J. M. and M. Shashkov, "Natural discretization for the divergence, gradient and curl on logically rectangular grids," Comput. Math. Appl., Vol. 33, 81-104, 1997.

64. Hyman, J. M. and M. Shashkov, "Adjoint operators for the natural discretization for the divergence, gradient and curl on logically rectangular grids," Appl. Num. Math., Vol. 25, 413-442, 1997.

65. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comp. Phys., Vol. 151, 881-909, 1999.

© Copyright 2014 EMW Publishing. All Rights Reserved