PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 171-188

GEOMETRIC ASPECTS OF THE SIMPLICIAL DISCRETIZATION OF MAXWELL'S EQUATIONS

By F. L. Teixeira

Full Article PDF (293 KB)

Abstract:
Aspects of the geometric discretization of electromagnetic fields on simplicial lattices are considered. First, the convenience of the use of exterior differential forms to represent the field quantities through their natural role as duals (cochains) of the geometric constituents of the lattice (chains = nodes, edges, faces, volumes) is briefly reviewed. Then, the use of the barycentric subdivision to decompose the (ordinary) simplicial primal lattice together with the (twisted) non-simplicial barycentric dual lattice into simplicial elements is considered. Finally, the construction of lattice Hodge operators by using Whitney maps on the first barycentric subdivision is described. The objective is to arrive at a discrete formulation of electromagnetic fields on general lattices which better adheres to the underlying physics.

Citation: (See works that cites this article)
F. L. Teixeira, "Geometric Aspects of the Simplicial Discretization of Maxwell's Equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107
http://www.jpier.org/PIER/pier.php?paper=00080107

References:
1. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, 1957.
doi:10.1515/9781400877577

5. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, New York, 1973.

3. Burke, W. L., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9781139171786

4. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Am. J. Math., Vol. 98, No. 1, 79-104, 1976.
doi:10.2307/2373615

5. Weingarten, D., "Geometric formulation of electrodynamics and general relativity in discrete space-time," J. Math. Phys., Vol. 18, No. 1, 165-170, 1977.
doi:10.1063/1.523124

6. Muller, W., "Analytic torsion and R-torsion of Riemannian manifolds," Advances in Math., Vol. 28, 233-305, 1978.
doi:10.1016/0001-8708(78)90116-0

7. Tonti, E., "On the mathematical strucuture of a large class of physical theories," Rend. Acc. Lincei, Vol. 52, 48-56, 1972.

8. Tonti, E., "A mathematical model for physical theories," Rend. Acc. Lincei, Vol. 52, 175-181, 1972.

9. Tonti, E., "The algebraic-topological structure of physical theories," Proc. Conf. on Symmetry, Similarity, and Group Theoretic Meth. in Mechanics, 441-467, Calgary, Canada, 1974.

10. Tonti, E., "On the geometrical structure of electromagnetism," Gravitation, Electromagnetism, and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, G. Ferrarese (ed.), 281–308, Pitagora Editrice Bologna, 1995.

11. Tonti, E., "Algebraic topology and computational electromagnetism," Proc. Fourth Int. Workshop on the Electric and Magnetic Fields: from Num. Meth. to Ind. Applicat., 284-294, Marseille, France, 1998.

12. Ohkuro, S., "Differential forms and Maxwell’s field: An application of harmonic integrals," J. Math. Phys., Vol. 11, No. 6, 2005-2012, 1970.
doi:10.1063/1.1665359

13. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048

14. Kheyfets, A. and W. A. Miller, "The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.
doi:10.1063/1.529519

15. Bossavit, A., "Whitney forms: a new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988.

16. Bossavit, A., "Simplicial finite elements for scattering problems in electromagnetism," Comp. Meth. Appl. Mech. Engineering,, Vol. 76, 299-316, 1989.
doi:10.1016/0045-7825(89)90062-5

17. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. Thesis, Department of Electrical Engineering, McGill University, Montreal, Canada, 1984.

18. Kotiuga, P. R., "Variational principles for three-dimensional magnetostatics based on helicity," J. Appl. Phys., Vol. 63, No. 8, 3360-3362, 1988.
doi:10.1063/1.340782

19. Kotiuga, P. R., "Helicity functionals and metric invariance in three dimensions," IEEE Trans. Magn., Vol. 25, No. 4, 2813-2815, 1989.
doi:10.1109/20.34293

20. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, No. 9, 5815-5817, 1990.
doi:10.1063/1.345973

21. Kotiuga, P. R., "Metric dependent aspects of inverse problems and functionals based on helicity," J. Appl. Phys., Vol. 73, No. 10, 5437-5439, 1993.
doi:10.1063/1.353708

22. Hammond, P. and D. Baldomir, "Dual energy methods in electromagnetism using tubes and slices," IEEE Proc. A, Vol. 135, No. 3, 167-172, 1988.

23. Bossavit, A., "Differential forms and the computation of fields and forces in electromagnetism," Eur. J. Mech. B, Vol. 10, No. 5, 474-488, 1991.

24. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, New York, 1998.

25. Kettunen, L., K. Forsman, and A. Bossavit, "Discrete spaces for Div and Curl-free fields," IEEE Trans. Magn., Vol. 34, No. 5, 2551-2554, 1998.
doi:10.1109/20.717588

26. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250

27. Bossavit, A., "A posteriori error bounds by ‘local corrections’ using the dual mesh," IEEE Trans. Magn., Vol. 35, No. 3, 1350-1353, 1999.
doi:10.1109/20.767212

28. Bossavit, A., "On the notion of anisotropy of constitutive laws: Some implications of the ‘Hodge implies metric’ result,", private communication.
doi:10.1109/20.767212

29. Becher, P. and H. Joos, "The Dirac-Kahler equation and fermions on the lattice," Z. Phys. C, Vol. 15, 343-365, 1982.
doi:10.1007/BF01614426

30. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Electromagnetic boundary conditions and differential forms," IEE Proc., Microw. Ant. Prop., Vol. 142, 326-332, 1995.
doi:10.1049/ip-map:19952003

31. Jancewicz, B., "A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisotropic media," Ann. Phys., Vol. 245, 227-274, 1996.
doi:10.1006/aphy.1996.0009

32. Mattiussi, C., "An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology," J. Comp. Phys., Vol. 133, 289-309, 1997.
doi:10.1006/jcph.1997.5656

33. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching eletromagnetic field theory using differential forms," IEEE Trans. Edu., Vol. 40, No. 1, 53-68, 1997.
doi:10.1109/13.554670

34. Warnick, K. F. and D. V. Arnold, "Green forms for anisotropic, inhomogeneous media," J. Electromagn. Waves Appl., Vol. 11, No. 8, 1145-1164, 1997.
doi:10.1163/156939397X01061

35. Arkko, A., T. Tarhasaari, and L. Kettunen, "A time domain method for high frequency problems exploring the Whitney complex," Proc. 14th. Ann. Rev. Prog. Appl. Comp. Electromag. Soc., 121-126, Monterey, CA, 1998.

36. Kraus, C. and R. Ziolkowsky, "Topological and geometrical considerations for Maxwell’s equations on unstructured meshes," Proc. URSI Meeting, 714, Montreal, Canada, 1997.

37. Hiptmair, R., "Canonical construction of finite elements," Math. Computat., Vol. 68, 1325-1346, 1999.
doi:10.1090/S0025-5718-99-01166-7

38. Hiptmair, R., "Discrete Hodge operators,", Tech. Rep. 126, SFB 382, University of Tubingen, Tubingen, Germany, 1999.

39. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," J. Electromagn. Waves Applicat., Vol. 13, No. 5, 665-686, 1999.
doi:10.1163/156939399X01104

40. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767

41. Albeverio, S. and B. Zegarlinski, "Construction of convergent simplicial approximations of quantum field on Riemannian manifolds ," Comm. Math. Phys., Vol. 132, 39-71, 1990.
doi:10.1007/BF02277999

42. Albeverio, S. and J. Schafer, "Abelian Chern-Simons theory and linking numbers via oscilatory integrals," J. Mat. Phys., Vol. 36, No. 5, 2157-2169, 1995.
doi:10.1063/1.531036

43. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories,", eprint http://arxiv.org/archive/hepth/961209, 1996.

44. Adams, D. H., "A double discretization of Abelian Chern-Simons theory," Phys. Rev. Lett., Vol. 78, No. 22, 4155-4158, 1997.
doi:10.1103/PhysRevLett.78.4155

45. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.
doi:10.1103/PhysRevE.61.3174

46. Kojima, T., Y. Saito, and R. Dang, "Dual mesh approach for semiconductor device simulator," IEEE Trans. Magn., Vol. 25, No. 4, 2953-2955, 1989.
doi:10.1109/20.34335

47. Bossavit, A., "How weak is the ‘weak solution’ in finite element methods," IEEE Trans. Magn., Vol. 34, No. 5, 2429-2432, 1998.
doi:10.1109/20.717558

48. Bossavit, A. and L. Kettunen, "Yee-schemes on a tetrahedral mesh, with diagonal lumping," Int. J. Num. Model., Vol. 12, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G

49. Witten, E., "Topological quantum field theory," Comm. Math. Phys., Vol. 117, 353-386, 1988.
doi:10.1007/BF01223371

50. Fukuma, M., S. Hosono, and H. Kawai, "Lattice topological field theory in two dimensions," Comm. Math. Phys., Vol. 161, 157-175, 1994.
doi:10.1007/BF02099416

51. Chung, S.-W., M. Fukuma, and A. Shapere, "Structure of topological lattice field theory in three dimensions," Int. J. Mod. Phys., Vol. 9, No. 8, 1305-1360, 1994.
doi:10.1142/S0217751X94000595

52. da Cunha, B. G. C. and P. T. Sobrinho, "Quasitopological field theories in two dimensions as soluble models," Int. J. Mod. Phys., Vol. 13, No. 21, 3667-3689, 1998.
doi:10.1142/S0217751X98001724

53. Felder, G., J, Frolich, J. Fuchs, and C. Schweigert, "Conformal boundary conditions and three-dimensional topological field theory," Phys. Rev. Lett., Vol. 84, No. 8, 1659-1662, 2000.
doi:10.1103/PhysRevLett.84.1659

54. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Propagat., Vol. 14, 302-307, 1966.

55. Taflove, A., "Computational Electrodynamics: The Finite- Difference Time-Domain Method," Artech House, Boston, 1995.

56. Weiland, T., "On the numerical solutions of Maxwell’s equations and applications in the field of accelerator physics," Particle Accelerators, Vol. 15, 245-292, 1984.

57. Weiland, T., "Time domain electromagnetic field computations with finite difference methods," Int. J. Num. Model., Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8

58. Chew, W. C., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, No. 10, 4843-4850, 1994.

59. Radhakrishnan, K. and W. C. Chew, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1764-1771, 1999.

60. Mattiussi, C., "Finite volume, finite difference, and finite element methods for physical field problems," Advancing Imaging Electron. Phys., Vol. 113, 1-146, 2000.

61. McCartin, B. J. and J. F. DiCello, "Three dimensional finite difference frequency domain scattering computation using the control region approximation," IEEE Trans. Magn., Vol. 25, No. 4, 3092-3094, 1989.

62. Rappaport, C. M. and E. B. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Trans. Magn., Vol. 27, No. 5, 3848-3851, 1991.

63. Hyman, J. M. and M. Shashkov, "Natural discretization for the divergence, gradient and curl on logically rectangular grids," Comput. Math. Appl., Vol. 33, 81-104, 1997.

64. Hyman, J. M. and M. Shashkov, "Adjoint operators for the natural discretization for the divergence, gradient and curl on logically rectangular grids," Appl. Num. Math., Vol. 25, 413-442, 1997.

65. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comp. Phys., Vol. 151, 881-909, 1999.


© Copyright 2014 EMW Publishing. All Rights Reserved