PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 357-381

FREQUENCY DOMAIN ANALYSIS OF WAVEGUIDES AND RESONATORS WITH FIT ON NON-ORTHOGONAL TRIANGULAR GRIDS

By U. van Rienen

Full Article PDF (1,319 KB)

Abstract:
The focus of this paper is on the solution of Maxwell's equations for time-harmonic fields on triangular, possibly nonorthogonal meshes. The method is based on the well-known Finite Integration Technique (FIT) [33, 35] which is a proven consistent discretization method for the computation of electromagnetic fields. FIT on triangular grids was first introduced in [29, 31] for eigenvalue problems arising in the design of accelerator components and dielectric loaded waveguides. For many technical applications the 2D simulation on a triangular grid combines the advantages of FIT, as e.g. the consistency of the method or the numerical advantage of banded system matrices, with the geometrical flexibility of non-coordinate grids. The FIT-discretization on non-orthogonal 2D grids has close relations [26] to the N´ed´elec elements [14, 15] or edge elements in the Finite Element Method.

Citation: (See works that cites this article)
U. van Rienen, "Frequency Domain Analysis of Waveguides and Resonators with Fit on Non-Orthogonal Triangular Grids," Progress In Electromagnetics Research, Vol. 32, 357-381, 2001.
doi:10.2528/PIER00080114
http://www.jpier.org/PIER/pier.php?paper=00080114

References:
1. Bartsch, M., U. van Rienen, and T. Weiland, "Consistent finite integration approach for coupled computation of static current distributions and electromagnetic fields," IEEE Trans. Magn., Vol. 34, No. 5, 3098-3101, Sept. 1998.
doi:10.1109/20.717725

2. Bihn, M. and T. Weiland, "A Stable discretization scheme for the simulation of elastic waves," 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 2, 75-80, Berlin, 1997.

3. Bossavit, A., , private communication.

4. Bossavit, A., Computational Electromagnetism, Variational Formulations, Edge Elements, Complementarity, Academic Press, Boston, 1998.

5. Clemens, M., R. Schuhmann, U. van Rienen, and T. Weiland, "Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory," ACES Journal, Special Issue on Applied Mathematics: Meeting the Challenges Presented by Computational Electromagnetics, Vol. 11, No. 1, 70-84, March 1996.

6. Clemens, M., P. Thoma, T. Weiland, and U. van Rienen, "A survey on the computational electromagnetic field calculation with the FI method," Surveys on Mathematics for Industry, Vol. 8, No. 3–4, 213-232, 1999.

7. Cooper, R. K., M. J. Browman, T. Weiland, and U. van Rienen, "Waveguide calculations using established codes," IEEE Trans. Electron Devices, Vol. 35, No. 11, 2044-2047, 1988.
doi:10.1109/16.7425

8. Cooper, R. K., U. van Rienen, and T. Weiland, "RF waveguide design by proven electromagnetic CAD systems," General Assembly of the URSI, Israel, Tel Aviv, August 1987.

9. Dehler, M., "Numerische l¨osung der Maxwellschen Gleichungen auf kreiszylindrischen gittern,", Ph.D. thesis, Darmstadt University of Technology, 1993.

10. Dehler, M. and T. Weiland, "A new spectral domain technique for the calculation of eigenvalues in curvilinear coordinates," IEEE Trans. Magn., Vol. 30, No. 5, 3574-3577, 1994.
doi:10.1109/20.312711

11. Dohlus, M., P. Thoma, and T. Weiland, "Stability of finite difference time domain methods related to space and time discretization," IEEE Trans. Microwave Theory Tech., submitted.

12. Fellinger, P., "Ein Verfahren zur numerischen l¨osung elastischer wellenausbreitungsprobleme im zeitbereich durch direkte diskretisierung der elastodynamischen grundgleichungen,", Ph.D. thesis, Gesamthochschule Kassel, 1991.

13. Henke, H., Spherical Modes, ISR-RF 81-29, CERN, Geneva, Switzerland, 1981.

14. Nedelec, J., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415

15. Nedelec, J., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668

16. Pinder, P., "Zur numerischen berechnung gekoppelter elektromagnetischer und thermischer felder,", Ph.D. thesis, Darmstadt University of Technology, 1998.

17. Pinder, P. and T. Weiland, "Numerical calculation of coupled electromagnetic and thermal fields using the finite integration method," PIERS’96, 1996.

18. Raviart, P.-A. and J.-M. Thomas, "A mixed finite element method for second order elliptic problems," Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes (eds.), 292–315. Springer-Verlag, 1977.

19. Schmitt, D. and T. Weiland, "2D and 3D computations of eigenvalue problems," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 2, 1793-1796, 1992.

20. Schuhmann, R. and T. Weiland, "Stability of FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 5, 2751-2754, Sept. 1998.

21. Schuhmann, R. and T.Weiland, "A stable interpolation technique for FDTD on nonorthogonal grids," Int. J. Numerical Modelling, Focused Issue on “Finite Difference Time and Frequency Domain Methods”, Vol. 11, 299-306, 1998.

22. Tarhasaari, T., L. Kettunen, and A. Bossavit, "An interpretation of the Galerkin method as the realization of a discrete hodge operator," 8th Biennal IEEE Conf. on Electromagnetic Field Computation CEFC 1998, Tucson, Arizona, USA, June 1998.

23. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," Int. J. Numerical Modelling, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A

24. Tuckmantel, J., Application of SAP in URMEL, EF/RF 85-4, CERN, Geneva, Switzerland, July 1985.

25. van Rienen, U., "Zur numerischen Berechnung zeitharmonischer elektromagnetischer felder in offenen, zylindersymmetrischen strukturen unter verwendung von mehrgitterverfahren,", Ph.D. thesis, Darmstadt University of Technology, 1989.

26. van Rienen, U., "Finite integration technique on triangular grids revisited," Int. J. Numerical Modelling: Electronic Networks, Devices and Fields, Special Issue “Finite Difference Time and Frequency Domain Methods”, Vol. 12, 107-128, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<107::AID-JNM322>3.0.CO;2-2

27. van Rienen, U., Numerical Methods in Computational Electrodynamics --- Linear Systems in Practical Applications, Vol. 12 of Lecture Notes in Computational Science and Engineering, Springer, 2000.

28. van Rienen, U., P. Pinder, and T. Weiland, "Consistent finite integration approach for the coupled calculation of electromagnetic fields and stationary temperature distributions," 7th Biennal IEEE Conference on Electromagnetic Field Computation (CEFC), Vol. 294, Okayama, Japan, March 1996.

29. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities," IEEE Trans. Magn., Vol. 21, No. 6, 2317-2320, November 1985.
doi:10.1109/TMAG.1985.1064183

30. van Rienen, U. and T. Weiland, "Cavity and waveguide design by triangular mesh code URMEL-T," Int. Linear Accelerator Conf. LINAC’86, No. SLAC-303, 286, Stanford University, June 1986.

31. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in waveguides and cylindrically symmetric cavities," Part. Acc., Vol. 20, 239-267, 1986/87.

32. Villeneuve, A. T., "Analysis of slotted, dielectrically loaded, rigded waveguide," IEEE Trans. Microwave Theory Tech., Vol. 32, 524-532, 1984.

33. Weiland, T., "Eine methode zur l¨osung der Maxwellschen Gleichungen f¨ur sechskomponentige felder auf diskreter basis," Archiv f¨ur Elektrotechnik, Vol. 31, 116-120, 1977.

34. Weiland, T., "Zur berechnung der wirbelstr¨ome in beliebig geformten, lamellierten, dreidimensionalen eisenkorpern," Archiv f¨ur Elektrotechnik, Vol. 60, 345-351, 1978.
doi:10.1007/BF01576115

35. Weiland, T., "On the unique numerical solution of Maxwellian Eigenvalue problems in three dimensions," Part. Acc., Vol. 17, 227-242, 1985.

36. Weiland, T., "Ein allgemeines verfahren zur l¨osung der Maxwell’schen Gleichungen und seine anwendung in physik und technik," Physikalische Blatter, Vol. 41, 380, 1986.

37. Weiland, T., "Elektromagnetisches CAD —rec hnergest¨utzte methoden zur berechnung von feldern,", Script, Darmstadt University of Technology, May 1995.

38. Weiland, T., "High precision eigenmode computation," Part. Acc., Vol. 56, 61-82, 1996.

39. Wolter, H., "Berechnung akustischer wellen und resonatoren mit der FIT-methode,", Ph.D. thesis, Darmstadt University of Technology, 1995.

40. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.


© Copyright 2014 EMW Publishing. All Rights Reserved