Vol. 32
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Frequency Domain Analysis of Waveguides and Resonators with Fit on Non-Orthogonal Triangular Grids
By
, Vol. 32, 357-381, 2001
Abstract
The focus of this paper is on the solution of Maxwell's equations for time-harmonic fields on triangular, possibly nonorthogonal meshes. The method is based on the well-known Finite Integration Technique (FIT) [33, 35] which is a proven consistent discretization method for the computation of electromagnetic fields. FIT on triangular grids was first introduced in [29, 31] for eigenvalue problems arising in the design of accelerator components and dielectric loaded waveguides. For many technical applications the 2D simulation on a triangular grid combines the advantages of FIT, as e.g. the consistency of the method or the numerical advantage of banded system matrices, with the geometrical flexibility of non-coordinate grids. The FIT-discretization on non-orthogonal 2D grids has close relations [26] to the N´ed´elec elements [14, 15] or edge elements in the Finite Element Method.
Citation
Ursula van Rienen, "Frequency Domain Analysis of Waveguides and Resonators with Fit on Non-Orthogonal Triangular Grids," , Vol. 32, 357-381, 2001.
doi:10.2528/PIER00080114
References

1. Bartsch, M., U. van Rienen, and T. Weiland, "Consistent finite integration approach for coupled computation of static current distributions and electromagnetic fields," IEEE Trans. Magn., Vol. 34, No. 5, 3098-3101, Sept. 1998.
doi:10.1109/20.717725

2. Bihn, M. and T. Weiland, "A Stable discretization scheme for the simulation of elastic waves," 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 2, 75-80, Berlin, 1997.

3. Bossavit, A., , private communication.

4. Bossavit, A., Computational Electromagnetism, Variational Formulations, Edge Elements, Complementarity, Academic Press, Boston, 1998.

5. Clemens, M., R. Schuhmann, U. van Rienen, and T. Weiland, "Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory," ACES Journal, Special Issue on Applied Mathematics: Meeting the Challenges Presented by Computational Electromagnetics, Vol. 11, No. 1, 70-84, March 1996.

6. Clemens, M., P. Thoma, T. Weiland, and U. van Rienen, "A survey on the computational electromagnetic field calculation with the FI method," Surveys on Mathematics for Industry, Vol. 8, No. 3–4, 213-232, 1999.

7. Cooper, R. K., M. J. Browman, T. Weiland, and U. van Rienen, "Waveguide calculations using established codes," IEEE Trans. Electron Devices, Vol. 35, No. 11, 2044-2047, 1988.
doi:10.1109/16.7425

8. Cooper, R. K., U. van Rienen, and T. Weiland, "RF waveguide design by proven electromagnetic CAD systems," General Assembly of the URSI, Israel, Tel Aviv, August 1987.

9. Dehler, M., "Numerische l¨osung der Maxwellschen Gleichungen auf kreiszylindrischen gittern,", Ph.D. thesis, Darmstadt University of Technology, 1993.

10. Dehler, M. and T. Weiland, "A new spectral domain technique for the calculation of eigenvalues in curvilinear coordinates," IEEE Trans. Magn., Vol. 30, No. 5, 3574-3577, 1994.
doi:10.1109/20.312711

11. Dohlus, M., P. Thoma, and T. Weiland, "Stability of finite difference time domain methods related to space and time discretization," IEEE Trans. Microwave Theory Tech., submitted.

12. Fellinger, P., "Ein Verfahren zur numerischen l¨osung elastischer wellenausbreitungsprobleme im zeitbereich durch direkte diskretisierung der elastodynamischen grundgleichungen,", Ph.D. thesis, Gesamthochschule Kassel, 1991.

13. Henke, H., Spherical Modes, ISR-RF 81-29, CERN, Geneva, Switzerland, 1981.

14. Nedelec, J., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415

15. Nedelec, J., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668

16. Pinder, P., "Zur numerischen berechnung gekoppelter elektromagnetischer und thermischer felder,", Ph.D. thesis, Darmstadt University of Technology, 1998.

17. Pinder, P. and T. Weiland, "Numerical calculation of coupled electromagnetic and thermal fields using the finite integration method," PIERS’96, 1996.

18. Raviart, P.-A. and J.-M. Thomas, "A mixed finite element method for second order elliptic problems," Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes (eds.), 292–315. Springer-Verlag, 1977.

19. Schmitt, D. and T. Weiland, "2D and 3D computations of eigenvalue problems," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 2, 1793-1796, 1992.

20. Schuhmann, R. and T. Weiland, "Stability of FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 5, 2751-2754, Sept. 1998.

21. Schuhmann, R. and T.Weiland, "A stable interpolation technique for FDTD on nonorthogonal grids," Int. J. Numerical Modelling, Focused Issue on “Finite Difference Time and Frequency Domain Methods”, Vol. 11, 299-306, 1998.

22. Tarhasaari, T., L. Kettunen, and A. Bossavit, "An interpretation of the Galerkin method as the realization of a discrete hodge operator," 8th Biennal IEEE Conf. on Electromagnetic Field Computation CEFC 1998, Tucson, Arizona, USA, June 1998.

23. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," Int. J. Numerical Modelling, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A

24. Tuckmantel, J., Application of SAP in URMEL, EF/RF 85-4, CERN, Geneva, Switzerland, July 1985.

25. van Rienen, U., "Zur numerischen Berechnung zeitharmonischer elektromagnetischer felder in offenen, zylindersymmetrischen strukturen unter verwendung von mehrgitterverfahren,", Ph.D. thesis, Darmstadt University of Technology, 1989.

26. van Rienen, U., "Finite integration technique on triangular grids revisited," Int. J. Numerical Modelling: Electronic Networks, Devices and Fields, Special Issue “Finite Difference Time and Frequency Domain Methods”, Vol. 12, 107-128, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<107::AID-JNM322>3.0.CO;2-2

27. van Rienen, U., Numerical Methods in Computational Electrodynamics --- Linear Systems in Practical Applications, Vol. 12 of Lecture Notes in Computational Science and Engineering, Springer, 2000.

28. van Rienen, U., P. Pinder, and T. Weiland, "Consistent finite integration approach for the coupled calculation of electromagnetic fields and stationary temperature distributions," 7th Biennal IEEE Conference on Electromagnetic Field Computation (CEFC), Vol. 294, Okayama, Japan, March 1996.

29. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities," IEEE Trans. Magn., Vol. 21, No. 6, 2317-2320, November 1985.
doi:10.1109/TMAG.1985.1064183

30. van Rienen, U. and T. Weiland, "Cavity and waveguide design by triangular mesh code URMEL-T," Int. Linear Accelerator Conf. LINAC’86, No. SLAC-303, 286, Stanford University, June 1986.

31. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in waveguides and cylindrically symmetric cavities," Part. Acc., Vol. 20, 239-267, 1986/87.

32. Villeneuve, A. T., "Analysis of slotted, dielectrically loaded, rigded waveguide," IEEE Trans. Microwave Theory Tech., Vol. 32, 524-532, 1984.

33. Weiland, T., "Eine methode zur l¨osung der Maxwellschen Gleichungen f¨ur sechskomponentige felder auf diskreter basis," Archiv f¨ur Elektrotechnik, Vol. 31, 116-120, 1977.

34. Weiland, T., "Zur berechnung der wirbelstr¨ome in beliebig geformten, lamellierten, dreidimensionalen eisenkorpern," Archiv f¨ur Elektrotechnik, Vol. 60, 345-351, 1978.
doi:10.1007/BF01576115

35. Weiland, T., "On the unique numerical solution of Maxwellian Eigenvalue problems in three dimensions," Part. Acc., Vol. 17, 227-242, 1985.

36. Weiland, T., "Ein allgemeines verfahren zur l¨osung der Maxwell’schen Gleichungen und seine anwendung in physik und technik," Physikalische Blatter, Vol. 41, 380, 1986.

37. Weiland, T., "Elektromagnetisches CAD —rec hnergest¨utzte methoden zur berechnung von feldern,", Script, Darmstadt University of Technology, May 1995.

38. Weiland, T., "High precision eigenmode computation," Part. Acc., Vol. 56, 61-82, 1996.

39. Wolter, H., "Berechnung akustischer wellen und resonatoren mit der FIT-methode,", Ph.D. thesis, Darmstadt University of Technology, 1995.

40. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.