PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 413-428

COVARIANT ISOTROPIC CONSTITUTIVE RELATIONS IN CLIFFORD'S GEOMETRIC ALGEBRA

By P. Puska

Full Article PDF (331 KB)

Abstract:
Constitutive relations for isotropic material media are formulated in a manifestly covariant manner. Clifford's geometric algebra is used throughout. Polarisable,c hiral and Tellegen medium are investigated. The investigation leads to the discovery of an underlying algebraic structure that completely classifies isotropic media. Variational properties are reviewed,sp ecial attention is paid to the imposed constraints on material parameters. Covariant reciprocity condition is given. Finally,dualit y transformations and their relevance to constitutive relations are investigated. Duality is shown to characterise ‘well-behavedness' of medium which has an interesting metric tensor related implication.

Citation:
P. Puska, "Covariant Isotropic Constitutive Relations in Clifford's Geometric Algebra," Progress In Electromagnetics Research, Vol. 32, 413-428, 2001.
doi:10.2528/PIER00080116
http://www.jpier.org/PIER/pier.php?paper=00080116

References:
1. Lindell, I., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.

2. Edelen, D. G. B., Applied Exterior Calculus, Wiley, New York, 1985.

3. Post, E. J., Formal Structure of Electromagnetics, North-Holland, Amsterdam, 1962.

4. Burke, W. L., "Manifestly parity invariant electromagnetic theory and twisted tensors," Journal of Mathematical Physics, Vol. 24, 65-69, 1983.
doi:10.1063/1.525603

5. Puska, P., "Clifford algebra and electromagnetic boundary conditions at an interface," Journal of Electromagnetic Waves and Applications, Vol. 14, 11-24, 2000.
doi:10.1163/156939300X00536

6. Hillion, P., "Constitutiv e relations and Clifford algebra in electromagnetism," Advances in Applied Clifford Algebras, Vol. 5, 141-158, 1995.

7. Post, E. J., "The constitutive map and some of its ramifications," Annals of Physics, Vol. 71, 497-518, 1972.
doi:10.1016/0003-4916(72)90129-7

8. Benn, I. M. and R. W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, 1987.

9. Lounesto, P., Clifford Algebras and Spinors, Cambridge University Press,Cam bridge, 1997.

10. Rainich, G. Y., "Electrodynamics in the general relativity theory," Transactions of the American Mathematical Society, Vol. 27, 106-136, 1925.
doi:10.1090/S0002-9947-1925-1501302-6

11. Misner, C. W. and J. A. Wheeler, "Classical physics as geometry," Annals of Physics, Vol. 2, 525-603, 1957.
doi:10.1016/0003-4916(57)90049-0

12. Jauch, J. M. and K. M. Watson, "Phenomenological quantum-electrodynamics," Physical Review, Vol. 74, 950-957, 1948.
doi:10.1103/PhysRev.74.950

13. Papas, C. H., Theory of Electromagnetic Wave Propagation, Dover, Mineola, NY, 1988.

14. Rosenfeld, I., "Quan tenmechanische Theorie der nat¨urlichen optischen Aktivit¨at von Flussigkeiten und Gasen," Zeitschrift fur Physik, Vol. 52, 161-174, 1928.
doi:10.1007/BF01342393

15. Sobczyk, G., "The hyperbolic number plane," The College Mathematics Journal, Vol. 26, 268-280, 1995.
doi:10.1080/07468342.1995.11973712

16. Tellegen, B. D. H., "The gyrator,a new electric network element," Philips Research Reports, Vol. 3, 81-101, 1948.

17. Thirring, W., A Course in Mathematical Physics 2: Classical Field Theory, Springer, New York, 1979.

18. Cartan, H., Formes Differentielles, Hermann, Paris, 1967.

19. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, New York, 1986.

20. de Rham, G., Varietes differentiables, Hermann, Paris, 1960.

21. Urbantke, H., "On integrability properties of SU (2) Yang–Mills fields. I. Infinitesimal part," Journal of Mathematical Physics, Vol. 25, 2321-2324, 1984.
doi:10.1063/1.526402

22. Obukhov, Y. N. and F. W. Hehl, "Spacetime metric from linear electrodynamics," Physics Letters B, Vol. 458, 466-470, 1999.
doi:10.1016/S0370-2693(99)00643-7

23. Lakhtakia, A. and W. S. Weiglhofer, "Are linear, nonreciprocal, biisotropic media forbidden?," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1715-1716, 1994.
doi:10.1109/22.310568

24. Sihvola, A., "Are nonreciprocal bi-isotropic media forbidden indeed?," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, Pt. I, 1995, 2160–2162, 1995; Lakhtakia,A. and W. S. Weiglhofer,“Commen t,” and Sihvola,A.,“Reply to comment,” Ibid., Vol. 43, 2722–2724, 1995.
doi:10.1109/22.414555

25. Riesz, M., Clifford Numbers and Spinors, The Institute of Fluid Dynamics and Applied Mathematics,Lecture Series No. 38, University of Maryland, 1958. Reprinted as facsimile by Kluwer, Dordrecht, 1993.
doi:10.1007/978-94-017-1047-3

26. Jancewicz, B., Multivectors and Clifford Algebra in Electrodynamics, World Scientific, Singapore, 1988.

27. Baylis, W. E., Electrodynamics: A Modern Geometric Approach, Birkhauser, Boston, 1998.

28. Hestenes, D., Space-time Algebra, Gordon & Breach, New York, 1966.

29. Hestenes, D. and G. Sobczyk, Clifford Algebra to Geometric Calculus, Reidel, Dordrecht, 1984.
doi:10.1007/978-94-009-6292-7


© Copyright 2014 EMW Publishing. All Rights Reserved