PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 35 > pp. 115-125

DYADIC GREEN'S FUNCTION FOR AN UNBOUNDED ANISOTROPIC MEDIUM IN CYLINDRICAL COORDINATES

By K. Li, S.-O. Park, and W.-Y. Pan

Full Article PDF (214 KB)

Abstract:
The dyadic Green's function for an unbounded anisotropic medium is treated analytically in the Fourier domain. The Green's function, which is expressed as a triple Fourier integral, can be next reduced to a double integral by performing the integration over the longitudinal Fourier variable or the transverse Fourier variable. The singular behavior of Green's dyadic is discussed for the general anisotropic case.

Citation:
K. Li, S.-O. Park, and W.-Y. Pan, "Dyadic Green's Function for an Unbounded Anisotropic Medium in Cylindrical Coordinates," Progress In Electromagnetics Research, Vol. 35, 115-125, 2002.
doi:10.2528/PIER01022301
http://www.jpier.org/PIER/pier.php?paper=0102231

References:
1. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, New York, 1983.

2. Weiglhofer, W. S., "Dyadic Green’s function for general uniaxial media," Proc. IEE, Vol. 137H, 5-10, Jan. 1990.

3. Kaklamani, D. I. and N. K. Uzunoglu, "Radiation of a dipole in an infinite triaxial anisotropic medium," Electromag., Vol. 12, 231-245, 1992.
doi:10.1080/02726349208908313

4. Cottis, P. G. and G. D. Kondylis, "Properties of the dyadic Green’s function for an unbounded anisotropic medium," IEEE Trans. Antennas Propagat., Vol. 43, 154-161, Feb. 1995.
doi:10.1109/8.366377

5. Li, K., "Radiation of a magnetic dipole in an infinite anisotropic plasma medium," Chin. Phys. Lett., Vol. 15, 898-900, Dec. 1998.
doi:10.1088/0256-307X/15/12/014

6. Cottis, P. G. and G. D. Kondylis, "Green’s function for an unbounded biaxial medium in cylindrical coordinates," IEEE Trans. Antennas Propagat., Vol. 47, 195-199, Jan. 1999.
doi:10.1109/8.753010

7. Bladel, J. V., "Some remarks on Green’s dyadic for infinite space," IRE Trans. Antennas Propagat., Vol. 9, 563-566, Nov. 1961.
doi:10.1109/TAP.1961.1145064

8. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," J. Math. Phys., Vol. 6, 1617-1620, 1965.
doi:10.1063/1.1704702

9. Yaghjian, A. D., "Electric dyadic Green’s functions in the source regions," Proc. IEE, Vol. 68, 248-263, Feb. 1980.
doi:10.1109/PROC.1980.11620

10. Lee, S. W., J. Boersma, C. L. Law, and G. A. Deschamps, "Singularity in Green’s functions and its numerical evaluation," IEEE Trans. Antennas Propagat., Vol. 28, 311-317, May 1980.
doi:10.1109/TAP.1980.1142342

11. Asvestas, J. S., "Comments on ‘Singularity in Green’s functions and its numerical evaluation’," IEEE Trans. Antennas Propagat., Vol. 31, 174-177, May 1983.
doi:10.1109/TAP.1983.1143005

12. Pathak, P. H., "On the eigenfunction expansion of electromagnetic dyadic Green’s functions," IEEE Trans. Antennas Propagat., Vol. 31, 837-846, Nov. 1983.
doi:10.1109/TAP.1983.1143151

13. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green’s functions," IEEE Trans. Antennas Propagat., Vol. 37, 1322-1327, Oct. 1989.
doi:10.1109/8.43544

14. Zemanian, A. H., Distribution Theory and Transform Analysis, Dover, New York, 1987.

15. Jakoby, B. and F. Olyslager, "Quasi-static asymptotics of Green dyadics for general bianisotropic media," Arch. Elektron. Ubertragungstech., Vol. 50, 189-195, 1996.

16. Weiglhofer, W. S. and A. Lakhtakia, "On singularities of dyadic Green’s function and long wavelength scattering," Electromagn., Vol. 15, 209-222, 1995.
doi:10.1080/02726349508908415


© Copyright 2014 EMW Publishing. All Rights Reserved