Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Study on Bandwidth of 2-D Dielectric PBG Material

By
Progress In Electromagnetics Research, Vol. 41, 83-106, 2003
doi:10.2528/PIER02010804

Abstract

Based on the eigenvalue equations of vector fields ⃗E and ⃗H by extending Bloch theorem to the vector field Maxwell equations, the characteristics of 2-D dielectric rod array with square cross-section elements arranged in square lattice is analyzed in detail. From the numerical results, empirical expressions for both the relative bandwidth of frequency band gap and the midgap frequency with respect to the average permittivity, under the optimal filling fraction of dielectric/air in cross-section for wider bandwidth, are formulated by means of data fit.

Citation

 (See works that cites this article)
, "Study on Bandwidth of 2-D Dielectric PBG Material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
doi:10.2528/PIER02010804
http://www.jpier.org/PIER/pier.php?paper=0201084

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 2, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. John, S., "Strong localization of photons in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 1987.
    doi:10.1103/PhysRevLett.58.2486

    3. Yablonovitch, E. and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case," Phys. Rev. Lett., Vol. 63, 1989.

    4. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett., Vol. 65, No. 21, 2646-2649, 1990.
    doi:10.1103/PhysRevLett.65.2646

    5. Satpathy, S. and Z. Zhang, "Theory of photon bands in threedimensional periodic dielectric structures," Phys. Rev. Lett., Vol. 64, No. 11, 1239-1242, 1990.
    doi:10.1103/PhysRevLett.64.1239

    6. Zhang, Z. and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys. Rev. Lett., Vol. 65, No. 21, 2650-2653, 1990.
    doi:10.1103/PhysRevLett.65.2650

    7. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, No. 25, 3152-3155, 1990.
    doi:10.1103/PhysRevLett.65.3152

    8. Sözuer, H. S. and J. W. Haus, "Photonic bands: Convergence problems with the plane-wave method," Phys. Rev. B, Vol. 45, No. 24, 13962-13972, 1992.
    doi:10.1103/PhysRevB.45.13962

    9. Kweon, G.-I. and N. M. Lawandy, "Quantum electrodynamics in photonic crystals," Optics Communications, Vol. 118, 388-411, 1995.
    doi:10.1016/0030-4018(95)00069-K

    10. Plihal, M., A. Shambrook, A. A. Maradudin, and P. Sheng, "Twodimensional photonic band structures," Opt. Commun., Vol. 80, No. 3, 199-204, 1991.
    doi:10.1016/0030-4018(91)90250-H

    11. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.
    doi:10.1103/PhysRevB.44.8565

    12. McCall, S. L., P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett., Vol. 67, No. 15, 2017-2020, 1991.
    doi:10.1103/PhysRevLett.67.2017

    13. Villeneuve, P. R. and M. Piche, "Photonic band gaps in twodimensional square and hexagonal lattices," Phys. Rev. B, Vol. 46, No. 8, 4969-4972, 1992.
    doi:10.1103/PhysRevB.46.4969

    14. Villeneuve, P. R. and M. Piche, "Photonic band gaps in twodimensional square lattices: Square and circular rods," Phys. Rev. B, Vol. 46, No. 8, 4973-4975, 1992.
    doi:10.1103/PhysRevB.46.4973

    15. Padjen, R., J. M. Gerard, and J. Y. Marzin, "Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems," Journal of Modern Optics, Vol. 41, No. 2, 295-310, 1994.

    16. Maradudin, A. A. and A. R. McGurn, "Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium," Journal of Modern Optics, Vol. 41, No. 2, 275-284, 1994.

    17. Villeneuve, P. R. and M. Piche, "Photonic band gaps of transverse- electric modes in two-dimensionally periodic media," J. Opt. Soc. Am. A, Vol. 8, No. 8, 1296-1305, 1991.

    18. Anderson, C. M. and K. P. Giapis, "Larger two-dimensionalphotonic band gaps," Phys. Rev. Lett., Vol. 77, No. 14, 2949-2952, 1996.
    doi:10.1103/PhysRevLett.77.2949

    19. Qiu, M. and S. He, "Large complete band gap in two-dimensional photonic crystals with elliptic air holes," Phys. Rev. B, Vol. 60, No. 15, 10610-10612, 1999.
    doi:10.1103/PhysRevB.60.10610

    20. Li, Z.-Y., B.-Y. Gu, and G.-Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett., Vol. 81, No. 12, 2574-2577, 1998.
    doi:10.1103/PhysRevLett.81.2574

    21. Yang, H.-Y. D., "Surface-wave elimination in integrated circuit structures with artificial periodic materials," Electromagnetics, Vol. 20, 125-130, 2000.
    doi:10.1080/027263400308311

    22. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patchantenna performance by suppressing surface waves using photonicbandgap substrates," IEEE Trans. on MTT, Vol. 47, No. 11, 2131-2138, 1999.
    doi:10.1109/22.798009

    23. Shumpert, J. D., W. J. Chappell, and L. P. B. Katehi, "Parallelplate mode reduction in conductor-backed slots using electromagnetic bandgap substrates," IEEE Trans. on MTT, Vol. 47, No. 11, 2099-2104, 1999.
    doi:10.1109/22.798005

    24. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, No. 16, 11245-11251, 1996.
    doi:10.1103/PhysRevB.54.11245

    25. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, No. 9, 2526-2538, 1994.

    26. Bell, P. M., J. B. Pendry, L. M. Moreno, and A. J. Ward, "A program for calculating photonic band structures and transmission coefficients of complex structures," Comput. Phys. Comm., Vol. 85, 306-322, 1995.
    doi:10.1016/0010-4655(94)00131-K

    27. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B, Vol. 55, 15942-8437, 1997.
    doi:10.1103/PhysRevB.55.15942

    28. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency- domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, No. 3, 173-190, 2001.

    29. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, 1995.

    30. Johnson, S. G. and J. D. Joannopoulos, The MIT Photonic-Bands Package, http://ab-initio.mit.edu/mpb/.

    31. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Holt-saunders International Editions, 1976.