Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

FDTD Simulations of Reconfigurable Electromagnetic Band Gap Structures for Millimeter Wave Applications

By
Progress In Electromagnetics Research, Vol. 41, 159-183, 2003
doi:10.2528/PIER02010807

Abstract

Metallo-dielectric electromagnetic bandgap (EBG) structures are studied in the millimeter regime with a finite difference time domain (FDTD) simulator. Several EBG waveguiding structures are considered for millimeter-wave power splitting, switching and filtering operations. It is demonstrated that triangular EBG structures lend themselves naturally to the design of Y-power splitters. Square EBG structures with circular and square rods are shown to lead naturally to straight in-line waveguide filter applications. Comparisons between EBG millimeter-wave waveguide filters formed with dielectric and metallic rods are given. It is shown that high quality broad bandwidth, millimeter-wave bandstop filters can be realized with square EBG structures with circular metallic rods. It is demonstrated that multiple bandstop performance in a single device can be obtained by cascading together multiple EBG millimeter-wave waveguide filters. It is also demonstrated that one can control the electromagnetic power flow in these millimeter-wave EBG waveguide devices by introducing additional local defects. It is shown that the Y-power splitter can be made reconfigurable by using imposed current distributions to achieve these local defects and, consequently, that a millimeter-wave EBG switch can be realized.

Citation

 (See works that cites this article)
, "FDTD Simulations of Reconfigurable Electromagnetic Band Gap Structures for Millimeter Wave Applications," Progress In Electromagnetics Research, Vol. 41, 159-183, 2003.
doi:10.2528/PIER02010807
http://www.jpier.org/PIER/pier.php?paper=0201087

References


    1. Joannopoulos, J.D., R.D.Meade, and J.N.Winn, Photonics Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

    2. Foresi, J.S., P.R.Villeneuv e, J.F errera, E.R.Tho en, G.Steinmey er, S.F an, J.D.Joannop oulos, L.C.Kimerling, H.I.Smith, and E.P .Ipp en, "Photonic-bandgap microcavities in optical waveguides," Nature, Vol. 390, No. 6656, 1997.

    3. Painter, O., R.K.Lee, A.Sc herer, A.Y ariv, J.D.O'Brien, P.D.Dapkus, and I.Kim, "Two-dimensional photonic band-gap defect mode laser," Science, Vol. 284, No. 5421, 1819-1821, 1999.
    doi:10.1126/science.284.5421.1819

    4. Vuckovic, J., O.P ainter, X.Y ong, A.Y ariv, and A.Sc herer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quan. Electronics, Vol. 35, No. 8, 1168-1175, 1999.
    doi:10.1109/3.777216

    5. Benisty, H., C.Weisbuch, D.Labillo y, M.Rattier, C.J.M.Smith, T.F.Krauss, R.M.de-la-Rue, R.Houdre, U.Oesterle, C.Jouanin, and D.Cassagne, "Optical and confinement properties of two-dimensional photonic crystals," J. Lightwave Tech., Vol. 17, No. 11, 2063-2077, 1999.
    doi:10.1109/50.802996

    6. Scherer, A., O.P ainter, A.Husain, J.V uckovic, D.Dapkus, and J.O'Brien, "Photoniccrystalnanocavitylasers,''Int.J.HighSpeedElectr.Sys.,Vol.10,No.1,387-391,March2000.7.Weisbuch,C.,H.Benisty,andR.Houdre,Microcavities,photoniccrystalsandsemiconductors:Frombasicphysicstoapplicationsinlightemitters," Int. J. High Speed Electr. Sys., Vol. 10, No. 1, 339-354, 2000.

    8. Lee, R.K., O.P ainter, B.Kitzk e, A.Sc herer, and A.Y ariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B, Vol. 17, No. 4, 629-633, 2000.

    9. Painter, O., A.Husain, A.Sc herer, P.T.Lee, I.Kim, J.D.O'Brien, and P.D.Dapkus, "Lithographic tuning of a twodimensional photonic crystal laser array," IEEE Photonics Tech. Lett., Vol. 12, No. 9, 1126-1128, 2000.
    doi:10.1109/68.874210

    10. Smith, C.J.M., T.F.Krauss, H.Benist y, M.Rattier, C.W eisbuch, U.Oesterle, and R.Houdre, "Directionally dependent confinement in photonic-crystal microcavities," J. Opt. Soc. Am. B, Vol. 17, No. 12, 2043-2051, 2000.

    11. Olivier, S., C.Smith, M.Rattier, H.Benist y, C.W eisbuch, T.Krauss, R.Houdre, and U.Oesterle, "Miniband transmission in a photonic crystal coupled-resonator optical waveguide," Opt. Lett., Vol. 26, No. 13, 1019-1021, 2001.

    12. Sigalas, M.M., R.Bisw as, and K.M.Ho, "Theoretical study of dipole antennas on photonic band-gap materials," Microwave Opt. Tech. Lett., Vol. 13, No. 4, 205-209, 1996.
    doi:10.1002/(SICI)1098-2760(199611)13:4<205::AID-MOP9>3.0.CO;2-Q

    13. Radisic, V., Y.Qian, R.Co ccioli, and T.Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, No. 2, 69-71, 1998.
    doi:10.1109/75.658644

    14. Rumsey, I., M.Pik et-May, and P.K.Kelly, "Photonic bandgap structures used as filters in microstrip circuits," IEEE Microwave Guided Wave Lett., Vol. 8, No. 10, 336-338, 1998.
    doi:10.1109/75.735413

    15. Smith, G.S., M.P .Kesler, and J.G.Maloney, "Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: gain, field patterns, and input impedance," Microwave Opt. Tech. Lett., Vol. 21, No. 3, 191-196, 1999.
    doi:10.1002/(SICI)1098-2760(19990505)21:3<191::AID-MOP10>3.0.CO;2-L

    16. Sigalas, M.M., R.Bisw as, K.M.Ho, W.Leung, G.T uttle, and D.D.Crouc h, "The effect of photonic crystals on dipole antennas," Electromagnetics, Vol. 19, No. 3, 291-303, 1999.

    17. Fei, R.Y., P.M.Kuang, Q.Y ongxi, and T.Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
    doi:10.1109/22.780402

    18. Coccioli, R., R.Y.F ei-Ran, P.M.Kuang, and T.Itoh, "AperturecoupledpatchantennaonUC-PBGsubstrate,''IEEETrans.MicrowaveTheoryTech.,Vol.47,No.11,2123-2130,November1999.19.Gonzalo,R.,P.De-Maagt,andM.Sorolla,Enhancedpatchantennaperformancebysuppressingsurfacewavesusingphotonicbandgapsubstrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
    doi:10.1109/22.798009

    20. Thevenot, M., C.Cheyp e, A.Reineix, and B.Jec ko, "Directive photonic-bandgap antennas," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2115-2122, 1999.
    doi:10.1109/22.798007

    21. Collardey, S., G.P oilasne, A.C.T arot, P.P ouliguen, C.T erret, and K.Mahdjoubi, "Metallic photonic bandgap propagation mode characterization," Microwave Opt. Tech. Lett., Vol. 28, No. 6, 434-440, 2001.
    doi:10.1002/1098-2760(20010320)28:6<434::AID-MOP1064>3.0.CO;2-9

    22. Serier, C., C.Cheyp e, R.Chan talat, M.Thev enot, T.Monediere, A.Reineix, and B.Jec ko, "1-D photonic bandgap resonator antenna," Microwave Opt. Tech. Lett., Vol. 29, No. 5, 312-315, 2001.
    doi:10.1002/mop.1164

    23. Sailing, H., M.P opov, M.Qiu, L.Zhigang, and C.Simo vski, "Explicit formulas for obtaining the radiation characteristics of an antenna based on a three-dimensional metallic photonic bandgap structure," Microwave Opt. Tech. Lett., Vol. 29, No. 6, 376-381, 2001.
    doi:10.1002/mop.1183

    24. Min, Q.and H.Sailing, "High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover," Microwave Opt. Tech. Lett., Vol. 30, No. 1, 41-44, 2001.
    doi:10.1002/mop.1214

    25. Reynolds, A.L., H.M.H.Chong, I.G.Tha yne, J.M.Arnold, and P.De-Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 7, 1254-1261, 2001.
    doi:10.1109/22.932244

    26. Hill, M.J., R.W.Ziolk owski, and J.P apapolymerou, "Simulated and measured results from a Duroid-based planar MBG cavity resonance filter," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 12, 528-530, 2000.
    doi:10.1109/75.895092

    27. Hill, M.J., R.W.Ziolk owski, and J.P apapolymerou, "A high- Q reconfigurable planar EBG cavity resonator," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, 255-257, 2001.
    doi:10.1109/7260.928930

    28. McGurn, A.R.and A.A.Maradudin, "Photonic band structures of two-and three-dimensional periodic metal or semiconductor arrays," Phys. Rev. B, Vol. 48, No. 12, 17576-17579, 1993.
    doi:10.1103/PhysRevB.48.17576

    29. Kuzmiak, V., A.A.Maradudin, and F.Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, No. 23, 16835-16844, 1994.
    doi:10.1103/PhysRevB.50.16835

    30. Sigalas, M.M., C.M.Souk oulis, C.T.Chan, and K.M.Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B, Vol. 49, No. 16, 11080-11087, 1994.
    doi:10.1103/PhysRevB.49.11080

    31. Sigalas, M.M., C.T.Chan, K.M.Ho, and C.M.Souk oulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, No. 16, 11744-11751, 1995.
    doi:10.1103/PhysRevB.52.11744

    32. Sievenpiper, D.F., M.E.Sic kmiller, and E.Y ablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, No. 14, 2480-2483, 1996.
    doi:10.1103/PhysRevLett.76.2480

    33. Scalora, M., M.J.Blo emer, A.S.P ethel, J.P .Do wling, C.M.Bo wden, and A.S.Mank a, "Transient, metallo-dielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys., Vol. 83, No. 5, 2377-2383, 1998.
    doi:10.1063/1.366996

    34. Sievenpiper, D.F., E.Y ablonovitch, J.N.Winn, S.F an, P.R.Villeneuv e, and J.D.Joannop oulos, "3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands," Physical-Review-Letters, Vol. 80, No. 13, 2829-3230, 1998.
    doi:10.1103/PhysRevLett.80.2829

    35. Bloemer, J.M.and M.Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, No. 14, 1676-1678, 1998.
    doi:10.1063/1.121150

    36. Contopanagos, H., N.G.Alexop oulos, and E.Y ablonovitch, "High-Q radio-frequency structures using one-dimensionally periodic metallic films," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1310-1312, 1998.
    doi:10.1109/22.709476

    37. Lie, M.L., Q.Z.Zhao, and Z.Xiangdong, "Transmission and absorption properties of two-dimensional metallic photonic-bandgap materials," Phys. Rev. B, Vol. 58, No. 23, 15589-15594, 1998.
    doi:10.1103/PhysRevB.58.15589

    38. Sigalas, M.M., R.Bisw as, K.M.Ho, C.M.Souk oulis, D.T urner, B.V asiliu, S.C.Kothari, and S.Lin, "Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials," Microwave Opt. Tech. Lett., Vol. 23, No. 1, 56-59, 1999.
    doi:10.1002/(SICI)1098-2760(19991005)23:1<56::AID-MOP17>3.0.CO;2-1