Vol. 41
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Numerical and Theoretical Study of Photonic Crystal Fibers
By
, Vol. 41, 271-305, 2003
Abstract
In this work, we study a novel type of optical waveguide, whose properties derive from a periodic arrangement of fibers (not necessarily circular), and from a central structural defect along which the light is guided. We first look for propagating modes in photonic crystal fibers of high indexcore region which can be single mode at any wavelength [1-4]. Unlike the first type of photonic crystal fibers, whose properties derive from a high effective index, there exists some fundamentally different type of novel optical waveguides which consist in localizing the guided modes in air regions [4-5]. These propagating modes are localized in a low-indexstructural defect thanks to a photonic bandgap guidance for the resonant frequencies (coming from the photonic crystal cladding). We achieve numerical computations with the help of a new finite element formulation for spectral problems arising in the determination of propagating modes in dielectric waveguides and particularly in optical fibers [7]. The originality of the paper lies in the fact that we take into account both the boundness of the crystal (no Bloch wave expansion or periodicity boundary conditions) and the unboundness of the problem (no artificial boundary conditions at finite distance). We are thus led to an unbounded operator (open guide operator) and we must pay a special attention to its theoretical study before its numerical treatment. For this, we choose the magnetic field as the variable. It involves both a transverse field in the section of the guide and a longitudinal field along its axis. The section of the guide is meshed with triangles and Whitney finite elements are used, i.e., edge elements for the transverse field and node elements for the longitudinal field. To deal with the open problem, a judicious choice of coordinate transformation allows the finite element modeling of the infinite exterior domain. It is to be noticed that the discretization of the open guide operator leads to a generalized eigenvalue problem, solved thanks to the Lanczos algorithm. The code is validated by a numerical study of the classical cylindrical fiber for which the eigenmodes are known in closed form. We then apply the code to Low IndexPhotonic Crystal Fibers (LPCF) and to High IndexPhotonic Crystal Fibers (HPCF).
Citation
"Numerical and Theoretical Study of Photonic Crystal Fibers," , Vol. 41, 271-305, 2003.
doi:10.2528/PIER02010893
References

1. Birks, T. A., J. C. Knight, and P. St. J. Russell, "Endlessly singlemode photonic crystal fiber," Optics Letters, Vol. 22, No. 13, 961-963, 1997.

2. Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, "Large mode area photonic crystal fibre," Electronics Letters, Vol. 34, No. 13, 1347-1348, 1998.
doi:10.1049/el:19980965

3. Knight, J. C., T. A. Birks, P. St. J. Russell, and J. P. de Sandro, "Properties of photonic crystal fiber and the effective index model," JOSA A, Vol. 15, 748, 1998.

4. Broeng, J., D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: a new class of optical waveguides," Optical Fiber Technology, 1999.

5. Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, No. 11, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476

6. Whitney, H., Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957.

7. Guenneau, S., A. Nicolet, F. Zolla, C. Geuzaine, and B. Meys, "A finite element formulation for spectral problems in optical fibers," Compel, Vol. 20, No. 1, 120-131, 2001.

8. Bonnet, A.-S., "Analyse mathematique de la propagation des modes guides dans les fibres optiques," Ph.D. Thesis, 1988.

9. Reed, M. and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Vol. 1, Academic Press, New York, 1978.

10. Bossavit, A., "Solving Maxwell equations in a closed cavity, and the question of spurious modes," IEEE Transactions on Magnetics, Vol. 26, No. 2, 1990.
doi:10.1109/20.106414

11. Bossavit, A., "Electromagnetisme en vue de la modelisation," Mathematiques et Applications, Vol. 14, 1993.

12. Nicolet, A., J-F. Remacle, B. Meys, A. Genon, and W. Legros, "Transformation methods in computational electromagnetism," J. Appl. Phys., Vol. 75, No. 10, 1994.
doi:10.1063/1.355500

13. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Amer. J. Math., Vol. 98, 79-104, 1976.
doi:10.2307/2373615

14. Dular, P., C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Transactions on Magnetics, Vol. 34, No. 5, 3395-3398, 1998.
doi:10.1109/20.717799

15. Meys, B., "Modelisation des champs electromagnetiques aux hyperfrequences par la methode des elements finis, application au probleme du chauffage dielectrique," Ph.D. Thesis, 1999.

16. Saad, Y., Numerical Methods for Large Eigenvalue Problems, Manchester Univ. Press, Ser. in alg. arch. for adv. sci. comp., 1991.

17. Geradin, M. and D. Rixen, Mechanical Vibrations: Theory and Applications to Structural Dynamics, John Wiley and Son, 2nd edition, 1997.

18. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, New York, 1983.

19. Petit, R., Ondes Electromagnetiques en Radioelectricite et en Optique, Masson, 1993.

20. Vassallo, C., Theorie des Guides d'Ondes en Electromagnetisme, CNET, Eyrolles editions, 1985.

21. Guenneau, S., "Homogeneisation des quasi-cristauxet analyse des modes dans des fibres optiques de type cristal photonique," Ph.D. Thesis, 2001.