PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 35 > pp. 287-297

COMPUTATION OF SCATTERING FROM ANISOTROPICALLY COATED BODIES USING CONFORMAL FDTD

By H.-X. Zheng, X.-Q. Sheng, and E. K.-N. Yung

Full Article PDF (142 KB)

Abstract:
A conformal FDTD approach is developed to compute scattering from anisotropically coated bodies. Comparisons between the standard and conformal FDTDs are numerically carried out to demonstrate the advantages of the conformal FDTD. Scattering of anisotropic dielectric sphere is computed and compared with the analytical results to further validate the developed approach. Several new results of scattering by anisotropically coated bodies are also given in the paper.

Citation: (See works that cites this article)
H.-X. Zheng, X.-Q. Sheng, and E. K.-N. Yung, "Computation of Scattering from Anisotropically Coated Bodies Using Conformal FDTD," Progress In Electromagnetics Research, Vol. 35, 287-297, 2002.
doi:10.2528/PIER02030804
http://www.jpier.org/PIER/pier.php?paper=0203084

References:
1. Senior, T. B. A., "Approximate boundary conditions," IEEE Trans. Antennas Propag., Vol. 29, No. 5, 826-829, Sept. 1981.
doi:10.1109/TAP.1981.1142657

2. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Trans. Antennas Propag.,, Vol. 39, No. 5, 627-631, May 1991.
doi:10.1109/8.81490

3. Sheng, X. Q., J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundaryintegral method for 3D scattering," IEEE Trans. Antennas Propag., Vol. 46, 303-311, Mar. 1998.
doi:10.1109/8.662648

4. Jurgens, T. G., A. Taflove, K. R. Umashankar, and T. G. Moore, "Finite difference time-domain modeling of curved surfaces," IEEE Trans. Antennas Propag., Vol. 40, 357-366, 1992.
doi:10.1109/8.138836

5. Yu, W. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957

6. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, FL, 1993.

7. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd Edition, Artech House, Norwood, MA, 2000.

8. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propag., Vol. 39, 429-433, Apr. 1991.
doi:10.1109/8.81453

9. Varadan, V. V., A. Lakhtakia, and V. K. Varadan, "Scattering by three-dimensional anisotropic scatterers," IEEE Trans. Antennas Propag., Vol. 37, 800-802, June 1989.
doi:10.1109/8.29369

10. Yaghjian, A. D. and R. V. McGahan, "Broadside radar crosssection of a perfectly conducting cube," IEEE Trans. Antennas Propag., Vol. 33, 321-329, Mar. 1985.
doi:10.1109/TAP.1985.1143582


© Copyright 2014 EMW Publishing. All Rights Reserved