PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 251-287

SMALL-SLOPE APPROXIMATION METHOD: A FURTHER STUDY OF VECTOR WAVE SCATTERING FROM TWO-DIMENSIONAL SURFACES AND COMPARISON WITH EXPERIMENTAL DATA

By G. Berginc

Full Article PDF (2,926 KB)

Abstract:
This paper deals with the calculation of the scattering cross-section of polarized electromagnetic plane waves from 2-D metallic and dielectric randomly rough surfaces. The scattering crosssection of object is calculated by the Local Small Slope Approximation (SSA), the scattering cross-section is then compared with experimental data. In this paper, second order terms of the SSA method have been numerically implemented in order to obtain accurate results for a large range of slope. In this paper, we consider scattered and incident wave vectors in arbitrary directions, metallic and dielectric materials with complexp ermittivity. Surfaces are considered with Gaussian probability density functions for surface heights and Gaussian or non-Gaussian correlation functions. The coherent and incoherent components of the electromagnetic intensity for cross- and co-polarization are calculated in the bistatic case and we give several comparisons of the theory with measured data.

Citation: (See works that cites this article)
G. Berginc, "Small-Slope Approximation Method: a Further Study of Vector Wave Scattering from Two-Dimensional Surfaces and Comparison with Experimental Data," Progress In Electromagnetics Research, Vol. 37, 251-287, 2002.
doi:10.2528/PIER02070603
http://www.jpier.org/PIER/pier.php?paper=0207063

References:
1. Tsang, L., J. A. Kong, K. H. Ding, and C. A. Ao, Scattering of Electromagnetic Waves, Numerical Simulations, Wiley Series in Remote Sensing, Wiley Interscience, New York, 2001.
doi:10.1002/0471224308

2. Bourlier, C., G. Berginc, and J. Saillard, "Theoretical study of the Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect: application to the backscattering coefficient for a perfectly-conducting surface," Waves in Random Media, Vol. 11, 91-118, 2001.
doi:10.1088/0959-7174/11/2/302

3. Bourlier, C., G. Berginc, and J. Saillard, "Bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase and scalar approximation with shadowing effect: comparisons with experiments and application to the sea surface," Waves in Random Media, Vol. 11, 119-147, 2001.
doi:10.1088/0959-7174/11/2/303

4. Fitzgerald, R. M. and A. A. Maradudin, "A reciprocal phaseperturbation theory for rough surface scattering," Waves Random Media, Vol. 4, 275-296, 1994.
doi:10.1088/0959-7174/4/3/004

5. Bahar, E., "Full wave solutions for the depolarization of the scattered radiation fields by rough surfaces of arbitrary slope," IEEE Trans. Antennas Propag., Vol. 29, 443-454, 1981.
doi:10.1109/TAP.1981.1142604

6. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Boston, MA, 1994.

7. Hsieh, G. Y., A. K. Fung, G. Nesti, A. J. Sieber, and P. Coppo, "A further study of the IEM surface scattering model," IEEE Geos. Rem. Sens., Vol. 35, No. 4, 901-909, 1997.
doi:10.1109/36.602532

8. Hsieh, G. Y., "Effects of bistatic multiple surface scattering from perfectly conducting surface," Electromagnetics, Vol. 20, No. 2, 99-124, 2000.
doi:10.1080/027263400308302

9. Hsieh, G. Y., "Prediction of IEM model for backscattering enhancement," Electromagnetics, Vol. 20, No. 3, 205-231, 2000.
doi:10.1080/027263400308258

10. Jin, Y.-Q., "Multiple scattering from a randomly rough surface," J. Appl. Phys., Vol. 63, No. 5, 1286-1292, 1988.
doi:10.1063/1.339953

11. Jin, Y.-Q., "Backscattering enhancement from a randomly rough surface," Physical Review, Vol. B42, No. 16, 9819-9829, 1990.
doi:10.1103/PhysRevB.42.9819

12. Ishimaru, A. and S. Chen, "Scattering from very rough metallic and dielectric surfaces: a theory based on a modified Kirchhoff approximation," Waves Random Media, Vol. 1, S91-S107, 1991.
doi:10.1088/0959-7174/1/3/008

13. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, and T. K. Chan, "Polarimetric scattering theory for high slope rough surfaces," Progress In Electromagnetic Research, J. A. Kong (ed.), Vol. 14, 1–36, EMW, 1996.

14. Alvarez-Perez, J. L., "An extension of the IEM/IEMM surface scattering model," Waves Random Media, Vol. 11, 307-330, 2001.

15. Milder, D. M., "An improved formalism for wave from rough surfaces," J. Acoust. Soc. Am., Vol. 89, 529-541, 1991.
doi:10.1121/1.400377

16. Voronovich, A. G., "Small slope approximation in wave scattering by rough surfaces," Sov. Phys.-JETP, Vol. 62, 65-70, 1985.

17. Voronovich, A. G., Wave Scattering from Rough Surfaces, Springer Series on Wave Phenomena, 2nd edition, Springer, Berlin, 1998.

18. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric halfspace," Wave in Random Media, Vol. 4, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

19. Voronovich, A. G., "Non local small-slope for wave scattering from rough surfaces," Wave in Random Media, Vol. 6, 151-167.

20. Broschat, S. L. and E. I. Thorsos, "An investigation of the small slope approximation for scattering from rough surfaces, Part I," Theory J. Acoust. Soc. Am., Vol. 89, 2082-2093, 1995.

21. Berginc, G., Y. Beniguel, and B. Chevalier, "Small-slope approximation method: higher order contributions for scattering from conducting 3D surfaces," Proceedings of SPIE, P.T. C. Chen, Z.-H. Gu, and A. A. Maradudin (eds.), Rough Surface Scattering and Contamination, Vol. 3784, 207–217, 1999.

22. Chevalier, B. and G. Berginc, "Small-slope approximation method: scattering of a vector wave from 2D dielectric and metallic surfaces with Gaussian and non-Gaussian statistics," Proceedings of SPIE, Z.-H. Gu and A. A. Maradudin (eds.), Scattering and Surface Roughness III, Vol. 4100, 22–32, 2000.

23. Berginc, G. and Y. Beniguel, "Extension of the small-slope approximation method for 3D scattering cross-section calculation of a rough convex object," PIERS Proceedings, Nantes, 582, 1998.

24. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, Wiley Series in Remote Sensing, Wiley Interscience, New York, 2001.
doi:10.1002/0471224278

25. O’Donnel, K. A. and E. R. Mendez, "Experimental study of scattering characterized random surfaces," J. Opt. Soc. Am., Vol. 4, No. 7, 1194-1205, 1987.
doi:10.1364/JOSAA.4.001194

26. Bahar, E. and B. S. Lee, "Radar scatter cross section for twodimensional random rough surfaces — full wave solutions and comparisons with experiments," Wave in Random Media, Vol. 6, 1-23, 1996.
doi:10.1080/13616679609409792

27. Hernandez-Walls, C. E. I. and E. R. Mendez, "Scattering by randomly two-dimensional dielectric surfaces," Proceedings of SPIE, Vol. 3426, 164-170, 1998.

28. Calvo-Perez, O., "Diffusion des ondes electromagnetiques par un film dielectrique rugueux heterogene. Etude experimentale et modelisation,", Ph.D. Thesis, Ecole Centrale de Paris, French, 1999.


© Copyright 2014 EMW Publishing. All Rights Reserved