PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 29-53

STRIPLINE TRANSITION TO RIDGE WAVEGUIDE BANDPASS FILTERS

By M. A. El Sabbagh, H.-T. Hus, K. A. Zaki, P. Pramanick, and T. Dolan

Full Article PDF (1,163 KB)

Abstract:
Full wave optimization is implemented to design a wide band transition from shielded stripline to ridge waveguide. A bandpass ridge waveguide filter, with input/output realized through tapped-in stripline is designed. Using rigorous mode matching technique the generalized scattering matrices of all the building blocks are obtained. Design procedure is described and examples are given to demonstrate the features of the tapped-in coupling structure. The tapped-in structure results in a considerable reduction of the filter's total length compared to the use of two transitions.

Citation: (See works that cites this article)
M. A. El Sabbagh, H.-T. Hus, K. A. Zaki, P. Pramanick, and T. Dolan, "Stripline Transition to Ridge Waveguide Bandpass Filters," Progress In Electromagnetics Research, Vol. 40, 29-53, 2003.
doi:10.2528/PIER02080503
http://www.jpier.org/PIER/pier.php?paper=0208053

References:
1. Bailey, A., W. Foley, M. Hageman, C. Murray, A. Piloto, K. Sparks, and K. Zaki, "Miniature LTCC filters for digital receivers," 1997 IEEE MTT-S Int. Microwave Symp. Digest, 999-1002, 1997.
doi:10.1109/MWSYM.1997.602970

2. Wang, C. and K. A. Zaki, "Full-wave modeling of generalized double ridge waveguides T-junctions," IEEE Trans. Microwave Theory and Tech., Vol. 44, 2536-2542, Dec. 1996.
doi:10.1109/22.554596

3. Gipprich, J., D. Stevens, M. Hageman, A. Piloto, K. Zaki, and Y. Rong, "Embedded waveguide filters for microwave and wireless applications using cofired ceramic technologies," Proc. Int. Microelectron. Symp., 23-26, San Diego, CA, Nov. 1998.

4. Rong, Y., K. Zaki, M. Hageman, D. Stevens, and J. Gipprich, "Low temperature cofired ceramic (LTCC) ridge waveguide bandpass filters," 1999 IEEE MTT-S Int. Microwave Symp. Digest, 1147-1150, 1999.
doi:10.1109/MWSYM.1999.779590

5. Rong, Y., K. Zaki, J. Gipprich, M. Hageman, and D. Stevens, "LTCC wide-band ridge-waveguide bandpass filters," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1836-1840, Sept. 1999.
doi:10.1109/22.788520

6. Yao, H.-W., A. E. Abdelmonem, J. F. Liang, and K. A. Zaki, "Analysis and design of microstrip-to-waveguide transitions," IEEE Trans. on Microwave Theory and Tech., Vol. 42, 2371-2380, Dec. 1994.

7. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Norwood, MA, 1980.

8. Yao, H. W., A. E. Abdelmonem, J. F. Liang, X. P. Liang, and K. A. Zaki, "Wide-band waveguide and ridge waveguide T-junctions for diplexer applications," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 12, 2166-2173, Dec. 1993.
doi:10.1109/22.260702

9. Wang, C. and K. A. Zaki, "Modeling of couplings between doubleridge waveguide and dielectric-loaded resonator," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2404-2411, Dec. 1998.
doi:10.1109/22.739228

10. Agilent EEsof EDA, Palo Alto, CA, "Agilent high frequency structure simulator 5.5,", December 1999.

11. Cristal, E. G., "Tapped-line coupling transmission lines with applications to interdigital and combline filters," IEEE Trans. on Microwave Theory and Tech., Vol. 23, 1007-1012, Dec. 1975.
doi:10.1109/TMTT.1975.1128734

12. Caspi, S. and J. Adelman, "Design of combling and interdigital filters with tapped-line input," IEEE Trans. on Microwave Theory and Tech., Vol. 36, 759-763, Apr. 1988.
doi:10.1109/22.3583


© Copyright 2014 EMW Publishing. All Rights Reserved