PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 55-69

SPATIAL CORRELATION FUNCTIONS FOR FIELDS IN THREE-DIMENSIONAL RAYLEIGH CHANNELS

By Ph. De Doncker

Full Article PDF (317 KB)

Abstract:
Starting from a continuous plane-wave representation of the electric and magnetic fields, spatial auto- and cross-correlation functions for field components and their modulus are derived in the three-dimensional Rayleigh channel case. It is shown that existing results, generally relying on two-dimensional or isotropic models, can significantly differ from those obtained thanks to a three-dimensional approach.

Citation: (See works that cites this article)
Ph. De Doncker, "Spatial Correlation Functions for Fields in Three-Dimensional Rayleigh Channels," Progress In Electromagnetics Research, Vol. 40, 55-69, 2003.
doi:10.2528/PIER02082204
http://www.jpier.org/PIER/pier.php?paper=0208224

References:
1. Jakes, W. C., Microwave Mobile Communications, Wiley, New York, 1974.

2. Lee, W. C., Mobile Communications Design Fundamentals, Wiley, New York, 1993.
doi:10.1002/9780470930427

3. Saunders, S. R., Antennas and Propagation for Wireless Communication Systems, Wiley, New York, 1999.

4. Fuhl, J., A. F. Molisch, and E. Bonek, "Unified channel model for mobile radio systems with smart antennas," IEE Proc. Radar Sonar Navig., Vol. 145, 32-41, Feb. 1998.
doi:10.1049/ip-rsn:19981750

5. Chuah, C., D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, "Capacity scaling in MIMO wireless systems under correlated fading," IEEE Trans. Infor. Theor., Vol. 48, 637-650, March 2002.
doi:10.1109/18.985982

6. Shiu, D., G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Trans. Comm., Vol. 48, 502-512, March 2000.
doi:10.1109/26.837052

7. Salz, J. and J. H. Winters, "Effect of fading correlation on adaptative arrays in digital mobile radio," IEEE Trans. Vehic. Tech., Vol. 43, 1049-1057, Nov. 1994.
doi:10.1109/25.330168

8. Lehman, T. H., "A statistical theory of electromagnetic fields in complex cavities," Interaction Notes, Note 494, May 1993.

9. Hill, D. A., "Spatial correlation function for fields in a reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 37, 138, Feb. 1995.
doi:10.1109/15.350256

10. Pnini, R. and B. Shapiro, "Intensity fluctuations in closed and open systems," Phys. Rev. E, Vol. 54, 1032-1035, Aug. 1996.
doi:10.1103/PhysRevE.54.R1032

11. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, 209-217, Aug. 1998.
doi:10.1109/15.709418

12. Hill, D. A., "Linear dipole response in a reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 41, 365-368, Nov. 1999.
doi:10.1109/15.809821

13. Papoulis, A., Probability, RandomV ariables and Stochastic Processes, McGraw-Hill, Auckland, 1965.

14. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic press, New York, 1965.


© Copyright 2014 EMW Publishing. All Rights Reserved