PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 39 > pp. 1-45

Time-Domain EFIE, MFIE, and CFIE Formulations Using Laguerre Polynomials as Temporal Basis Functions for the Analysis of Transient Scattering from Arbitrary Shaped Conducting Structures

By B. H. Jung, Y.-S. Chung, and T. K. Sarkar

Full Article PDF (2,468 KB)

Abstract:
In this paper, we present time-domain integral equation (TDIE) formulations for analyzing transient electromagnetic responses from three-dimensional (3-D) arbitrary shaped closed conducting bodies using the time-domain electric field integral equation (TDEFIE), the time-domain magnetic field integral equation (TD-MFIE), and the time-domain combined field integral equation (TD-CFIE). Instead of the conventional marching-on in time (MOT) technique, the solution methods in this paper are based on the Galerkin's method that involves separate spatial and temporal testing procedure. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D structures. The timedomain unknown coefficient is approximated by using an orthonormal basis function set that is derived from the Laguerre functions. These basis functions are also used as temporal testing. Using these Laguerre functions it is possible to evaluate the time derivatives in an analytic fashion. We also propose a second alternative formulation to solve the TDIE. The methods to be described result in very accurate and stable transient responses from conducting objects. Detailed mathematical steps are included and representative numerical results are presented and compared.

Citation: (See works that cites this article)
B. H. Jung, Y.-S. Chung, and T. K. Sarkar, "Time-Domain EFIE, MFIE, and CFIE Formulations Using Laguerre Polynomials as Temporal Basis Functions for the Analysis of Transient Scattering from Arbitrary Shaped Conducting Structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001
http://www.jpier.org/PIER/pier.php?paper=0208301

References:
1. Shankar, B., A. A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1064-1074, 2000.
doi:10.1109/8.876325

2. Jung, B. H. and T. K. Sarkar, "Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects," Microwave Opt. Technol. Lett., Vol. 34, No. 4, 289-296, 2002.
doi:10.1002/mop.10440

3. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.

4. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435

5. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 661-665, 1992.
doi:10.1109/8.144600

6. Rao, S. M. and T. K. Sarkar, "An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, 831-834, 1993.
doi:10.1109/8.250460

7. Rao, S. M. and T. K. Sarkar, "An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies," Microwave Opt. Technol. Lett., Vol. 17, No. 5, 321-325, 1998.
doi:10.1002/(SICI)1098-2760(19980405)17:5<321::AID-MOP14>3.0.CO;2-6

8. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1625-1634, 2000.
doi:10.1109/8.899679

9. Jung, B. H. and T. K. Sarkar, "Time-domain electric-field integral equation with central finite difference," Microwave Opt. Technol. Lett., Vol. 31, No. 6, 429-435, 2001.
doi:10.1002/mop.10055

10. Jung, B. H. and T. K. Sarkar, "An accurate and stable implicit solution for transient scattering and radiation from wire structures," Microwave Opt. Technol. Lett., Vol. 34, No. 5, 354-359, 2002.
doi:10.1002/mop.10461

11. Jung, B. H. and T. K. Sarkar, "Transient scattering from threedimensional conducting bodies by using magnetic field integral equation," J. of Electromagn. Waves andApplic at., Vol. 16, No. 1, 111-128, 2002.

12. Sarkar, T. K. and J. Koh, "Generation of a wide-band electromagnetic response through a Laguerre expansion using early-time and low-frequency data," IEEE Trans. Antennas Propagat., Vol. 50, No. 5, 1408-1416, 2002.

13. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

14. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, No. 3, 276-281, 1984.
doi:10.1109/TAP.1984.1143304

15. Rao, S. M., "Electromagnetic scattering and radiation of arbitrarily- shaped surfaces by triangular patch modeling," Ph.D. Dissertation, No. 8, 1980.

16. Van Bladel, J., Electromagnetic Fields, Hemisphere Publishing Coporation, 1985.

17. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three dimensional scattering problems," Computer Techniques for Electromagnetics, 1973.

18. Poularikas, A. D., The Transforms andApplic ations Handbook, IEEE Press, 1996.

19. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.

20. Chung, Y. S., T. K. Sarkar, B. H. Jung, and J. Zhong, "Solution of time domain electric field integral equation using an unconditionally stable methodology," IEEE Trans. Antennas Propagat..

21. Chung, Y. S, T. K. Sarkar, and B. H. Jung, "Solution of time domain magnetic field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett..

22. Chung, Y. S., T. K. Sarkar, and B. H. Jung, "An unconditionslly stable scheme for finite difference time domain (FDTD) method," IEEE Trans. Microwave Theory andT ech..


© Copyright 2014 EMW Publishing. All Rights Reserved