PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 45 > pp. 45-75

AN APPROXIMATE SOLUTION FOR SKEW INCIDENCE DIFFRACTION BY AN INTERIOR RIGHT-ANGLED ANISOTROPIC IMPEDANCE WEDGE

By G. Manara, P. Nepa, G. Pelosi, and A. Vallecchi

Full Article PDF (263 KB)

Abstract:
The scattering by an anisotropic impedance interior rightangled wedge is analyzed when the principal anisotropy directions on the two faces are parallel and perpendicular to the edge. The problem is first approached by directly applying geometrical optics (GO); this allows us to identify the conditions under which the edge diffracted contribution vanishes. For those configurations not satisfying the above conditions, a perturbative technique, based on the Sommerfeld-Maliuzhinets method, is developed to determine an approximate edge diffracted field solution, valid when the normalized surface impedances on the anisotropic faces assume small values. The perturbative corrections to the field are asymptotically evaluated in the context of the Uniform Geometrical Theory of Diffraction (UTD).

Citation: (See works that cites this article)
G. Manara, P. Nepa, G. Pelosi, and A. Vallecchi, "An Approximate Solution for Skew Incidence Diffraction by an Interior Right-Angled Anisotropic Impedance Wedge," Progress In Electromagnetics Research, Vol. 45, 45-75, 2004.
doi:10.2528/PIER03052702
http://www.jpier.org/PIER/pier.php?paper=0305272

References:
1. Kildal, P. S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas and Propagat., Vol. 44, No. 11, 1509-1520, 1996.
doi:10.1109/8.542076

2. Michelson, D. G. and E. V. Jull, "Depolarizing trihedral corner reflectors for radar navigation and remote sensing," IEEE Trans. Antennas Propagat., Vol. 43, No. 5, 513-518, 1995.
doi:10.1109/8.384196

3. Gennarelli, C., G. Pelosi, and G. Riccio, Physical optics analysis of the field backscattered by a depolarizing trihedral corner reflector, IEE Proc.—Microwave, Vol. 145, No. 6, 213-218, 1998.

4. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, Stevenage, U.K., 1995.

5. Manara, G., P. Nepa, and G. Pelosi, "High-frequency EM scattering by edges in artificially hard and soft surfaces illuminated at oblique incidence," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 790-800, 2000.
doi:10.1109/8.855499

6. Bilow, H. J., "Scattering by an infinite wedge with tensor impedance boundary conditions—a moment method/physical optics solution for the currents," IEEE Trans. Antennas Propagat., Vol. 39, No. 6, 767-773, 1991.
doi:10.1109/8.86874

7. Maliuzhinets, G. D., "Developments in our concepts of diffraction phenomena," Sov. Phys.: Usp., Vol. 69(2), No. 5, 749-758, 1959.
doi:10.1070/PU1959v002n05ABEH003170

8. Popov, A. V., "Numerical solution of the wedge diffraction problem by the transverse diffusion," Sov. Phys. Acoust., Vol. 15, No. 2, 226-233, 1969.

9. Pelosi, G., S. Selleri, and R. D. Graglia, "The parabolic equation model for the numerical analysis of the diffraction at an impedance wedge: skew incidence case," IEEE Trans. Antennas Propagat., Vol. 44, 267-268, 1996.
doi:10.1109/8.481657

10. Zhu, N. Y. and F. M. Landstofer, "Numerical study of diffraction and slope-diffraction at anisotropic impedance wedges by the method of parabolic equation: space wave," IEEE Trans. Antennas Propagat., Vol. 45, 822-828, 1997.
doi:10.1109/8.575629

11. Nefedov, Y. I. and A. T. Fialkovskiy, "Diffraction of plane electromagnetic wave at anisotropic half-plane in free space and in planar waveguide," Radio Eng. Electron. Physics, Vol. 17, No. 6, 887-896, 1972.

12. Lyalinov, M. A., "Diffraction by a wedge with anisotropic face impedances," Ann. Telecommun., Vol. 49, No. 12, 667-672, 1994.

13. Pelosi, G., G. Manara, and P. Nepa, "Diffraction by a wedge with variable-impedance walls," IEEE Trans. Antennas Propagat., Vol. 44, No. 10, 1334-1340, 1996.
doi:10.1109/8.537327

14. ——, "A UTD solution for the scattering by a wedge with anisotropic impedance faces: skew incidence cases," IEEE Trans. Antennas Propagat., Vol. 46, No. 4, 579-588, 1998.
doi:10.1109/8.664124

15. Senior, T. B. A., "Skew incidence on a right-angled wedge," Radio Sci., Vol. 13, No. 4, 639-647, 1978.

16. Dybdal, R., L. Peters, Jr., and W. Peake, "Rectangular waveguides with impedances walls," IEEE Trans. Microwave Theory Tech., Vol. 19, 2-9, 1971.
doi:10.1109/TMTT.1971.1127438

17. Maliuzhinets, G. D., "Excitation, reflection and emission of surface waves from a wedge with given face impedances," Sov. Phys. Dokl., Vol. 3, 752-755, 1958.

18. Kouyoumjian, R. G. and P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.

19. Maliuzhinets, G. D., "Inversion formula for the Sommerfeld integral," Sov. Phys. Dokl., Vol. 3, 52-56, 1958.

20. Bowman, J. J. and T. B. A. Senior, "The wedges," Electromagnetic and Acoustic Scattering by Simple Shapes, 252-283, 1969.

21. Maliuzhinets, G. D., "The radiation of sound by the vibrating boundaries of an arbitrary wedge. Part I," Sov. Phys. Acoust., Vol. 1, 152-174, 1955.

22. Tuzhilin, A. A., "The theory of Maliuzhinets inhomogeneous functional equations," Differ. Urav., Vol. 9, 2058-2064, 1973.

23. Maliuzhinets, G. D., "Radiation of sound from the vibrating faces of an arbitrary wedge. Part II," Sov. Phys. Acoust., Vol. 1, 240-248, 1955.


© Copyright 2014 EMW Publishing. All Rights Reserved