Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 46 > pp. 189-202


By D. Cheng

Full Article PDF (114 KB)

Helix particle exhibits uniaxial electrical-magnetic coupling and doped material with helix particles has the nonlinearity properties of electromagnetic waves. Based on the small nonlinearity assumption, nonlinear electromagnetic waves propagating in doped materials with transversely and longitudinally uniaxial electrical-magnetic coupling are analytically formulated, respectively. It is shown that this class of nonlinear material can simultaneously support right- and left-handed elliptically-polarized nonlinear waves. In the case of transversely uniaxial electrical-magnetic coupling, the two nonlinear waves propagate with different phase velocities (sub- and super-luminously, respectively) and spatial profiles. For the case of longitudinally uniaxial electrical-magnetic coupling, the two nonlinear waves exhibit different spatial profiles but propagate with the same phase velocity. It is also found that complex nonlinear waves, which propagate with complex phase factor, could exist for certain constitutive parameters of this class of nonlinear material.

D. Cheng, "Nonlinear Waves in Doped Material with Uniaxial Electrical-Magnetic Coupling," Progress In Electromagnetics Research, Vol. 46, 189-202, 2004.

1. Uslenghi, P. L. E. (Ed.), Nonlinear Electromagnetics, Academic Press, San Diego, 1980.

2. Uslenghi, P. L. E. (Ed.), Special Issue on Nonlinear Electromagnetics, Vol. 11, Electromagnetics, Vol. 11, 1991.

3. Stegeman, G. I., et al., "Nonlinear slab-guided waves in non-Kerr-like media," IEEE J. Quantum Electron., Vol. 22, 977-983, 1986.

4. Rozzi, T., F. Chiaraluce, and L. Zappell, "Phase-plane approach to nonlinear propagation in dielectric slab waveguide," IEEE Trans. Microwave Theory Tech., Vol. 40, 102-111, 1992.

5. Ma, J.-G. and I. Wolff, "Propagation characteristics of TE-waves guided by thin films bounded by nonlinear media," IEEE Trans. Microwave Theory Tech., Vol. 43, 790-795, 1995.

6. Hasegawa, A., Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.

7. Agrawal, G. P., Nonlinear Fiber Optics, 2nd Ed., Academic, San Diego, 1995.

8. Stolen, R. H. and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett., Vol. 22, 294-296, 1973.

9. Ramadas, M. R., R. K. Varshney, K. Hyagarajan, and A. K. Ghatak, "A matrix approach to study the propagation characteristics of general nonlinear planar waveguide," J. Lightwave Technol., Vol. 7, 1901-1905, 1989.

10. Ogusu, K., "TM waves guided by nonlinear planar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 37, 941-946, 1989.

11. Beihlig, W., F. Lederer, U. Trutschel, U. Langbein, D. Mihalache, and A.D. Boardman, "TM-polarized nonlinear guided waves in multilayer systems," IEEE J. Quantum Electron., Vol. 27, 238-242, 1991.

12. Ashitaka, H., Y. Yokoh, R. Shimizu, T. Yokozawa, K. Morita, T. Suehiro, and Y. Matsumoto, "Chiral optical nonlinearity of helices," Nonlinear Opt., Vol. 4, 281-297, 1993.

13. Priou, A. (Ed.), Bianisotropic and Biisotropic Media and Applications, EMW Publishing, Boston, 1994.

14. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Norwood, 1994.

15. Engheta, N. (Ed.), 1992., Vol. 6, No. 6, 1992.

16. Lindell, I. V. and W. S. Weiglhofer, Green dyadic and dipole fields for a medium with anisotropic chirality, IEE Proc., Vol. 141, 211-215, 1994.

17. Cheng, D., "Field representations in a transversely bianisotropic uniaxial medium by cylindrical vector wave functions," J. Electromagn. Waves Applic., Vol. 8, 1061-1072, 1994.

18. Lindell, I. V., A. J. Viitanen, and P. K. Koivisto, "Plane-wave propagation in a transversely bianisotropic uniaxial medium," Microwave Opt. Technol. Lett., Vol. 6, 478-481, 1994.

19. Slepyan, G. Ya., S. A. Maksimenko, F. G. Bass, and A. Lakhtakia, "Nonlinear electromagnetics in chiral media: self-action of waves," Phys. Rev. E, Vol. 52, 1049-1058, 1995.

20. Hayata, K. and M. Koshiba, "Chirosolitons: unique spatial solitons in chiral media," IEEE Trans. Microwave Theory Tech., Vol. 43, 1814-1818, 1995.

21. Lindell, I. V., A. H. Sihvola, P. Puska, and L. H. Ruotanen, "Conditions for the parameter dyadics of lossless bianisotropic media," Microwave Optical Technol. Lett., Vol. 8, 268-272, 1995.

22. Marcuviz, N., Waveguide Handbook, McGraw-Hill, New York, 1951.

23. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

© Copyright 2014 EMW Publishing. All Rights Reserved