Vol. 46
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Nonlinear Waves in Doped Material with Uniaxial Electrical-Magnetic Coupling
By
, Vol. 46, 189-202, 2004
Abstract
Helix particle exhibits uniaxial electrical-magnetic coupling and doped material with helix particles has the nonlinearity properties of electromagnetic waves. Based on the small nonlinearity assumption, nonlinear electromagnetic waves propagating in doped materials with transversely and longitudinally uniaxial electrical-magnetic coupling are analytically formulated, respectively. It is shown that this class of nonlinear material can simultaneously support right- and left-handed elliptically-polarized nonlinear waves. In the case of transversely uniaxial electrical-magnetic coupling, the two nonlinear waves propagate with different phase velocities (sub- and super-luminously, respectively) and spatial profiles. For the case of longitudinally uniaxial electrical-magnetic coupling, the two nonlinear waves exhibit different spatial profiles but propagate with the same phase velocity. It is also found that complex nonlinear waves, which propagate with complex phase factor, could exist for certain constitutive parameters of this class of nonlinear material.
Citation
Dajun Cheng, "Nonlinear Waves in Doped Material with Uniaxial Electrical-Magnetic Coupling," , Vol. 46, 189-202, 2004.
doi:10.2528/PIER03091703
References

1. Uslenghi, P. L. E. (Ed.), Nonlinear Electromagnetics, Academic Press, San Diego, 1980.

2. Uslenghi, P. L. E. (Ed.), Special Issue on Nonlinear Electromagnetics, Vol. 11, Electromagnetics, Vol. 11, 1991.

3. Stegeman, G. I., E. M. Wright, C. T. Seaton, J. V. Moloney, T.-P. Shen, et al. "Nonlinear slab-guided waves in non-Kerr-like media," IEEE J. Quantum Electron., Vol. 22, 977-983, 1986.
doi:10.1109/JQE.1986.1073034

4. Rozzi, T., F. Chiaraluce, and L. Zappell, "Phase-plane approach to nonlinear propagation in dielectric slab waveguide," IEEE Trans. Microwave Theory Tech., Vol. 40, 102-111, 1992.
doi:10.1109/22.108329

5. Ma, J.-G. and I. Wolff, "Propagation characteristics of TE-waves guided by thin films bounded by nonlinear media," IEEE Trans. Microwave Theory Tech., Vol. 43, 790-795, 1995.
doi:10.1109/22.375225

6. Hasegawa, A., Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.

7. Agrawal, G. P., Nonlinear Fiber Optics, 2nd Ed., Academic, San Diego, 1995.

8. Stolen, R. H. and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett., Vol. 22, 294-296, 1973.
doi:10.1063/1.1654644

9. Ramadas, M. R., R. K. Varshney, K. Hyagarajan, and A. K. Ghatak, "A matrix approach to study the propagation characteristics of general nonlinear planar waveguide," J. Lightwave Technol., Vol. 7, 1901-1905, 1989.
doi:10.1109/50.41607

10. Ogusu, K., "TM waves guided by nonlinear planar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 37, 941-946, 1989.
doi:10.1109/22.25394

11. Beihlig, W., F. Lederer, U. Trutschel, U. Langbein, D. Mihalache, and A.D. Boardman, "TM-polarized nonlinear guided waves in multilayer systems," IEEE J. Quantum Electron., Vol. 27, 238-242, 1991.
doi:10.1109/3.78225

12. Ashitaka, H., Y. Yokoh, R. Shimizu, T. Yokozawa, K. Morita, T. Suehiro, and Y. Matsumoto, "Chiral optical nonlinearity of helices," Nonlinear Opt., Vol. 4, 281-297, 1993.

13. Priou, A. (Ed.), Bianisotropic and Biisotropic Media and Applications, EMW Publishing, Boston, 1994.

14. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Norwood, 1994.

15. Engheta, N. (Ed.), 1992., Vol. 6, No. 6, 1992.

16. Lindell, I. V. and W. S. Weiglhofer, "Green dyadic and dipole fields for a medium with anisotropic chirality," IEE Proc., Vol. 141, 211-215, 1994.

17. Cheng, D., "Field representations in a transversely bianisotropic uniaxial medium by cylindrical vector wave functions," J. Electromagn. Waves Applic., Vol. 8, 1061-1072, 1994.

18. Lindell, I. V., A. J. Viitanen, and P. K. Koivisto, "Plane-wave propagation in a transversely bianisotropic uniaxial medium," Microwave Opt. Technol. Lett., Vol. 6, 478-481, 1994.

19. Slepyan, G. Ya., S. A. Maksimenko, F. G. Bass, and A. Lakhtakia, "Nonlinear electromagnetics in chiral media: self-action of waves," Phys. Rev. E, Vol. 52, 1049-1058, 1995.
doi:10.1103/PhysRevE.52.1049

20. Hayata, K. and M. Koshiba, "Chirosolitons: unique spatial solitons in chiral media," IEEE Trans. Microwave Theory Tech., Vol. 43, 1814-1818, 1995.
doi:10.1109/22.402265

21. Lindell, I. V., A. H. Sihvola, P. Puska, and L. H. Ruotanen, "Conditions for the parameter dyadics of lossless bianisotropic media," Microwave Optical Technol. Lett., Vol. 8, 268-272, 1995.

22. Marcuviz, N., Waveguide Handbook, McGraw-Hill, New York, 1951.

23. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.