Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 51 > pp. 1-26


By W. C. Chew

Full Article PDF (551 KB)

We study the energy conservation property and loss condition of a left-handed material (LHM). First we argue by energy conservation that an LHM has to be a backward-wave material (BWM). Then we derive the equivalence of the loss and the Sommerfeld far-field radiation conditions for BWM. Next, we solve the realistic Sommerfeld problem of a point source over an LHM half space and an LHM slab. With this solution, we elucidate the physics of the interaction of a point source with an LHM half space and an LHM slab. We interpret our observation with surface plasmon resonance at the interfaces as well as the resonance tunneling phenomenon. This analysis lends physical insight into the interaction of a point source field with an LHM showing that super-resolution beyond the diffraction limit is possible with a very low loss LHM slab.

Citation: (See works that cites this article)
W. C. Chew, "Some Reflections on Double Negative Materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics USPEKI, Vol. 10, 1968.

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 2000.

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 2000.

4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed material," Phys. Rev. Lett., Vol. 85, 2000.

5. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW mediamedia with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol. 31, No. 2, 129-133, 2001.

6. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics, Vol. 90, 5483-5486, 2001.

7. Ruppin, R., "Extinction properties of a sphere with negative permittivity and permeability," Solid State Communications, Vol. 116, 411-415, 2000.

8. Ziolkowski, R. W., "Superluminal transmission of information through an electromagnetic metamaterial," Physical Review E, Vol. 63, 046604, 2001.

9. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol. 78, 489-491, 2001.

10. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, 056625, 2001.

11. Sarychev, K., V. M. Shalaev, and V. A. Podolskiy, "Plasmon modes in metal nanowires and left-handed materials," Journal of Nonlinear Optical Physics & Materials, Vol. 11, No. 1, 65-74, 2002.

12. Pendry, J. B. and S. Anantha Ramakrishna, "Near-field lenses in two dimensions," Journal of Physics: Condensed Matter, Vol. 14, 8463-8479, 2002.

13. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive Index media using periodically L-C loaded transmission lines," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 12, 2702-2712, 2002.

14. Pacheco J., Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, "Power propagation in homogeneous isotropic frequency dispersive left-handed media," Physical Review Letters, Vol. 89, 257401, 2002.

15. Kong, J. A., B.-I. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave and Optical Technology Letters, Vol. 33, No. 2, 137-139, 2002.

16. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.

17. Grbic, A. and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Applied Physics Letters, Vol. 82, 1815-1817, 2003.

18. Smith, D. R., D. Schurig, M. Rosenbluth, S. Schultz, S. Anantha Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Applied Physics Letters, 1506-1508, 2003.

19. Loschialpo, P. F., D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Phys. Rev. E, Vol. 67, 025602, 2003.

20. Alu, A. and N. Engheta, "Circuit equivalence of 'growing exponential' in Pendry's lens," USNC/CNC/URSI North American Radio Science Meeting Digest, 22-27, 2003.

21. Feynman, R., R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Vol. I, Vol. I, Chapter 52, Addison-Wesley Publishing Co., 1965.

22. Lee, T. D. and C. N. Yang, "Question of parity conservation in weak interaction," Phys. Rev., Vol. 104, No. 1, 254-257, 1956.

23. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1990.

24. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990. Reprinted by IEEE Press, 1995.

25. Banõs, Jr. and A., Dipole Radiation in the Presence of a Conducting Half-Space, Pergamom Press, New York, 1966.

© Copyright 2014 EMW Publishing. All Rights Reserved