Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 51 > pp. 49-63


By F. Bilotti, A. Alu, N. Engheta, and L. Vegni

Full Article PDF (163 KB)

In this paper, the theoretical justification and the numerical verification of the anomalous scattering from cavities partially filled with metamaterials are presented. A hybrid numerical formulation based on the Finite Element Method (FEM) and on the Boundary Integral (BI) for the analysis of cavity backed structures with complex loading metamaterials is first presented. The proposed approach allows the analysis of cavities filled with materials described by tensorial linear constitutive relations, which may well describe artificial metamaterials synthesized with proper inclusions in a host dielectric. It is found that cavities loaded with pairs of metamaterial layers with "resonant" features possess unusual scattering properties, and with judicious selection of constitutive parameters for these materials the transparency effect or significant enhancement in the backscattering from such cavities are obtained. This may be considered as a first step towards the analysis of the scattering and radiating features of cavity-backed patch antennas and reflect-arrays in presence of multilayered metamaterial loads.

Citation: (See works that cites this article)
F. Bilotti, A. Alu, N. Engheta, and L. Vegni, "Anomalous Properties of Scattering from Cavities Partially Loaded with Double-Negative or Single-Negative Metamaterials," Progress In Electromagnetics Research, Vol. 51, 49-63, 2005.

1. Brown, A. D., J. L. Volakis, L. C. Kempel, and Y. Y. Botros, "Patch antennas on ferromagnetic substrates," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 1, 26-32, 1999.

2. Vouvakis, M. N., C. A. Balanis, C. R. Birtcher, and A. C. Polycarpou, "Ferrite-loaded cavity-backed antennas including nonuniform and nonlinear magnetization effects," IEEE Trans. Antennas Propagat., Vol. AP-51, No. 5, 1000-1010, 2003.

3. Varadan, V. K., V. V. Varadan, and A. Lakhtakia, "On the possibility of designing broadband anti-reflection coatings with chiral composites," J. Wave Material Interaction, Vol. 2, No. 1, 71-81, 1987.

4. Cory, H. and I. Rosenhouse, "Minimization of reflection coefficient at feed of random-covered reflector antenna by chiral device," Electron. Lett., Vol. 27, No. 25, 2345-2347, 1991.

5. Brewitt-Taylor, C. R., P. G. Lederer, F. C. Smith, and S. Haq, "Measurement and prediction of helix-loaded chiral composites," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 4, 692-700, 1999.

6. Kamenetkii, E. O., "On the technology of making chiral and bianisotropic waveguides for microwave propagation," Microwave Opt. Technol. Lett., Vol. 11, No. 2, 103-107, 1996.

7. Kamenetkii, E. O., "Magnetostatically controlled bianisotropic media: a novel class of artificial magneto-electric materials," Advances in Complex Electromagnetic Materials, 359-376, 1997.

8. Ishimaru, A., S. W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. on Ant. and Propagat., Vol. 51, No. 10, 2550-2557, 2003.

9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2081, 1999.

11. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 92, No. 4, 517-526.

13. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E., Vol. 64, No. 5, 056625, 2001.

14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

15. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.

16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.

17. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless Propagat. Lett., Vol. 1, No. 1, 10-13, 7727.

18. Alù, A. and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-52, No. 1, 199-210, 2004.

19. Alù, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: anomalous tunneling and transparency," IEEE Trans. on Antennas and Propagat., Vol. AP-51, No. 10, 2558-2570, 2003.

20. Alù, A. and N. Engheta, "Resonances in sub-wavelength cylindrical structures made of pairs of double-negative and double-positive or ε-negative and μ-negative coaxial shells," Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA'03), 8-12, 2003.

21. Alù, A. and N. Engheta, "Peculiar radar cross section properties of double-negative and single-negative metamaterials," Proceedings of the 2004 IEEE Radar Conference, 26-29, 2004.

22. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "How metamaterials may significantly affect the wave transmission through sub-wavelength hole in a flat perfectly conducting screen," Proceedings of IEE Seminar on Metamaterials for Microwave and (Sub) Mil limetre Wave Applications: Photonic Bandgap and Double Negative Designs, 111-116, 2003.

23. Bilotti, F., L. Vegni, and A. Toscano, "Radiation and scattering features of patch antennas with bianisotropic substrates," IEEE T-AP, Vol. 51, No. 3, 449-456, 2003.

24. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three dimensional cavity backed apertures," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 1, 97-104, 1991.

25. Jin, J. M. and J. L. Volakis, "Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 4, 543-550, 1991.

26. Volakis, J. L., T. Ozdemir, and J. Gong, "Hybrid finite element methodologies for antennas and scattering," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 11, 493-507, 1997.

27. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 11, 1598-1604, 1991.

© Copyright 2014 EMW Publishing. All Rights Reserved