Vol. 49

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2004-09-14

The Fast Multipole Algorithm for Analysis of Large-Scale Microstrip Antenna Arrays

By J. Wan, T. Xiang, and Chang-Hong Liang
Progress In Electromagnetics Research, Vol. 49, 239-255, 2004
doi:10.2528/PIER04042201

Abstract

An efficient algorithm combining the fast multipole method (FMM) and the discrete complex image method (DCIM) is presented for analyzing large-scale microstrip structures. Firstly, the effect of complex images' locations on the algorithm is discussed in detail. And a simple and efficient scheme is proposed which greatly enhances the performance of this FMM-DCIM hybrid method. On the other hand, the incomplete LU (ILU) preconditioner with a dual dropping strategy is also tested to study the effect of this preconditioner on the convergence rate of microstrip structures.And experimental results show that this preconditioner reduces the number of iterations substantially.Then the solution is obtained using it in conjunction with the generalized minimal residual (GMRES).The fast multipole method is used to speed up the matrix-vector product in iterations.Numerical results for microstrip antennas are presented to demonstrate the efficiency and accuracy of this method.

Citation

 (See works that cites this article)
J. Wan, T. Xiang, and Chang-Hong Liang, "The Fast Multipole Algorithm for Analysis of Large-Scale Microstrip Antenna Arrays," Progress In Electromagnetics Research, Vol. 49, 239-255, 2004.
doi:10.2528/PIER04042201
http://www.jpier.org/PIER/pier.php?paper=0404221

References


    1. Bleszynski, E., M.Bleszynski, and T.Jaroszewicz, "AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
    doi:10.1029/96RS02504

    2. Rokhlin, V., "Rapid solution of integral equations of scattering in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, 1990.
    doi:10.1016/0021-9991(90)90107-C

    3. Coifman, R., V.Rokhlin, and S.W andzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 6, 7-12, 1993.
    doi:10.1109/74.250128

    4. Song, J.M., C.C.Lu, and W.C.Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
    doi:10.1109/8.633855

    5. Canning, F. X., "The impedance matrix localization (IML) method for moment-method calculations," IEEE Antennas Propagat. Mag., Vol. 32, No. 10, 18-30, 1990.
    doi:10.1109/74.80583

    6. Sarkar, T.K., E.Arv as, and S.M.Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 10, 635-640, 1986.
    doi:10.1109/TAP.1986.1143871

    7. Ling, F., C.F.W ang, and J.M.Jin, "An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex image method," IEEE APS Int. Symp Dig., Vol. 3, 1778-1781, 1998.

    8. Chow, Y.L., J.J.Y ang, D.G.F ang, and G.E.Ho ward, "A closedform spatial Green's function for the thick microstrip substrate," IEEE Trans.Microwave Theory Tech., Vol. 39, No. 3, 588-592, 1991.
    doi:10.1109/22.75309

    9. Zhao, J.S., W.C.Chew, C.C.Lu, E.Mic hielssen, and J.M.Song, "Thin-stratified medium fast-multipole algorithm for solving microstrip structures," IEEE Trans. Microwave Theory tech., Vol. 46, 395-403, 1998.
    doi:10.1109/22.664140

    10. Jandh yala, V., E. Michielssen, and R. Mittra, "Multipoleaccelerated capacitance computation for 3-D structures in a stratified dielectric medium using in a closed form Green's function," Int. J. Microw. Millim.-Wave Comput. Aided Eng., Vol. 5, No. 5, 68-78, 1995.

    11. Gurel, L.and M.I.Aksun, "Electromagnetic scattering solution of conducting strips in layered media using the fast multipole method," IEEE Microwave Guided Wave Lett., Vol. 6, No. 8, 277-279, 1996.
    doi:10.1109/75.508552

    12. Macdonald, P.A.and T.Itoh, "Fast simulation of microstrip structures using the fast multipole method," Int. J. Numer. Modeling: Electron. Networks, Vol. 9, 345-357, 1996.
    doi:10.1002/(SICI)1099-1204(199609)9:5<345::AID-JNM244>3.0.CO;2-Q

    13. Ling, F., J. Song, and J.-M. Jin, "Multilevel fast multipole algorithm for analysis of large-scale microstrip structures," IEEE Microwave Guided Wave Lett., Vol. 9, No. 12, 508-510, 1999.
    doi:10.1109/75.819414

    14. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 2, 314-323, 1988.
    doi:10.1109/22.3520

    15. Saad, Y., "ILUT: a dual threshold incomplete LU factorization," Numer. Linear Algebra Appl., Vol. 1, 387-402, 1994.
    doi:10.1002/nla.1680010405

    16. Green baum, A., Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.

    17. V an Der Vorst, H. A., "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 13, 631-644, 1992.
    doi:10.1137/0913035

    18. Saad, Y., "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 7, 856-869, 1986.
    doi:10.1137/0907058

    19. Wang, C.F., F.Ling, and J.M.Jin, "A fast full-wave analysis of scattering and radiation from large finite arrays of microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 46, No. 10, 1467-1474, 1998.
    doi:10.1109/8.725278

    20. Yuan, N., T. S. Yeo, X.-C. Nie, and L.-W. Li, "A fast analysis of scattering and radiation of large microstrip antenna arrays," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2218-226, 2003.
    doi:10.1109/TAP.2003.811082

    21. King, A.S.and W.J.Bo w, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., Vol. 40, No. 7, 770-774, 1992.
    doi:10.1109/8.155741