PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 50 > pp. 187-208

A FAST ANALYSIS OF SCATTERING FROM MICROSTRIP ANTENNAS OVER A WIDE BAND

By J. X. Wan and C.-H. Liang

Full Article PDF (218 KB)

Abstract:
An efficient algorithm combining the fast multipole method (FMM) and the characteristic basis function method (CBFM) for analysis of scattering from microstrip antennas over a wide band is introduced in this paper. In the hybrid algorithm, the characteristic basis function method is used to construct the currents on microstrip antennas by using characteristic basis functions (CBFs) which are constructed from the solution vectors at several samples using the singular value decomposition (SVD), thus obviating the need to repeatedly compute using a computational electromagnetic code and repeatedly solve a large method of moments matrix system at each point within the wide band of interest. The fast multipole method is used to obtain the solution vectors at these samples and speed up the matrix-vector product in the characteristic basis function method (CBFM). The resultant hybrid algorithm (FMM-CBFM) eliminates the need to generate and store the usual square impedance matrix and repeatedly use an iterative solver at each point and thus leads to a significant reduction in memory requirement and computational cost. Numerical examples are given to illustrate the accuracy and robustness of this method.

Citation: (See works that cites this article)
J. X. Wan and C.-H. Liang, "A fast analysis of scattering from microstrip antennas over a wide band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801
http://www.jpier.org/pier/pier.php?paper=0405281

References:
1. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
doi:10.1029/96RS02504

2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

3. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

4. Canning, F. X., "The impedance matrix localization (IML) method for moment-method calculations," IEEE Antennas Propagat. Mag., Vol. 32, No. 10, 18-30, 1990.
doi:10.1109/74.80583

5. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

6. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997.
doi:10.1109/43.662670

7. Ling, F., J. Song, and J.-M. Jin, "Multilevel fast multipole algorithm for analysis of large-scale microstrip structures," IEEE Microwave Guided Wave Lett., Vol. 9, No. l2, 508-510, 1999.
doi:10.1109/75.819414

8. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 588-592, 1991.
doi:10.1109/22.75309

9. Pillage, L. T., et al., "Asymptotic waveform evaluation for timing analysis," IEEE Trans. Comput.-Aided Des. Integrated Circuits and Syst., Vol. 9 No. 4, No. Vol. 9 4, 352-366, 1990.
doi:10.1109/43.45867

10. Wan, J. X. and C. H. Liang, "Rapid solutions of scattering from microstrip antennas using well-conditioned asymptotic waveform evaluation," Progress In Electromagnetics Research, Vol. PIER 49, 39-52, 2004.
doi:10.2528/PIER04021202

11. Lehmensiek, R. and P. Meyer, "An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping," Microwave Opt. Technol. Lett., Vol. 24, No. 1, 71-78, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<71::AID-MOP20>3.0.CO;2-O

12. Prakash, V. V. S., J. Yeo, and R. Mittra, "An adaptive algorithm for fast frequency response computation of planar microwave structures," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 920-926, 2004.
doi:10.1109/TMTT.2004.823574

13. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 2, 314-323, 1988.
doi:10.1109/22.3520

14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

15. Wan, J. X., T. M. Xiang, and C. H. Liang, "Fast multipole algorithm for analysis of large-scale microstrip antennas arrays," Progress In Electromagnetics Research, Vol. PIER 49, 239-255, 2004.
doi:10.2528/PIER04042201

16. Wang, C. F., F. Ling, and J. M. Jin, "A fast full-wave analysis of scattering and radiation from large finite arrays of microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 46, No. 10, 1467-1474, 1998.
doi:10.1109/8.725278

17. King, A. S. and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., Vol. 40, No. 7, 770-774, 1992.
doi:10.1109/8.155741

18. Saad, Y., "ILUT: a dual threshold incomplete LU factorization," Numer. Linear Algebra Appl., Vol. 1, 387-402, 1994.
doi:10.1002/nla.1680010405

19. Ling, F. and J. M. Jin, "Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem," Microwave Opt. Technol. Lett., Vol. 16, No. 4, 212-216, 1997.
doi:10.1002/(SICI)1098-2760(199711)16:4<212::AID-MOP5>3.0.CO;2-O


© Copyright 2014 EMW Publishing. All Rights Reserved