Vol. 50
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-10-12
A Complete FDTD Simulation of a Real GPR Antenna System Operating Above Lossy and Dispersive Grounds
By
Progress In Electromagnetics Research, Vol. 50, 209-229, 2005
Abstract
The finite difference time domain (FDTD) method is used to analyze a practical ground penetrating radar (GPR) antenna system operating above lossy and dispersive grounds. The antenna is of the resistor-loaded bow-tie type and the analysis is made for two known soil types, namely Puerto Rico and San Antonio clay loams. The soil is modeled by a two term Debye model with a static conductivity and it is matched to the mentioned soils by using curve fitting. The FDTD scheme is implemented by the auxiliary differential equation (ADE) method together with the uniaxial perfectly matched layer (UPML) absorbing boundary conditions (ABC). In order to model a real GPR environment, ground surface roughness and soil inhomogeneities are also included. The effect of soil properties on the GPR response and antenna input impedance is presented. Thus the ability to detect buried metal and plastic pipes is investigated.
Citation
Disala Uduwawala, Martin Norgren, Peter Fuks, and Aruna Gunawardena, "A Complete FDTD Simulation of a Real GPR Antenna System Operating Above Lossy and Dispersive Grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. AP-14, No. 5, 302-307, 1966.

2. Taflove, A., Computational Electrodynamics, Artech House, 1995.

3. Taflove, A., Advances in Computational Electrodynamics, Artech House, 1998.

4. Hipp, J. E., "Soil electromagnetic parameters as functions of frequency, density, and soil moisture," Proc. IEEE, Vol. 62, No. 1, 98-103, 1974.

5. Gurel, L. and U. Oguz, "Simulations of ground penetrating radars over lossy and heterogeneous grounds," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1190-1197, 2001.
doi:10.1109/36.927440

6. Oguz, U. and L. Gurel, "Frequency responses of ground penetrating radars operating over highly lossy grounds," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 6, 1385-1394, 2002.
doi:10.1109/TGRS.2002.800437

7. Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, "Finite-difference time domain simulation of ground penetrating radar on dispersive, Inhomogeneous, and conductive soils," IEEE Trans. Geosci. Remote Sensing, Vol. 36, No. 11, 1928-1937, 1998.
doi:10.1109/36.729364

8. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 1, 36-44, 1996.
doi:10.1109/36.481890

9. Kashiwa, T. and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with electronic polarization," Microwave and Optics Technology Letters, Vol. 3, 203-205, 1990.

10. Joseph, R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulse," Optics Letters, Vol. 16, 1412-1414, 1991.

11. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075

12. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

13. Gedney, S. D., "An anisotropic PML absorbing media for FDTD simulation of field in lossy dispersive media," Electromagnetics, Vol. 16, 399-415, 1996.

14. Maloney, J. G., K. L. Shlager, and G. S. smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propagat., Vol. 42, No. 2, 289-292, 1994.
doi:10.1109/8.277228

15. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A deep parametric study of resistor-loaded bow-tie antennas for ground penetrating radar applications using FDTD," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 4, 732-742, 2004.
doi:10.1109/TGRS.2003.819442

16. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time- dependent Maxwells equations," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, No. 8, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640

17. Jurgens, T. G., A. Taflove, K. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Trans. Antennas Propagat., Vol. 40, No. 4, 357-366, 1992.
doi:10.1109/8.138836

18. Daniels, D. J., D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," IEEE Proc., Vol. 135, No. 4, 278-320, 1988.