Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 51 > pp. 295-328


By B.-I. Wu, W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong

Full Article PDF (6,054 KB)

Using a commercial software, simulations are done on the radiation of a dipole antenna embedded in metamaterial substrates. Metamaterials under consideration are composed of a periodic collection of rods, or of both rods and rings. The S-parameters of these metamaterials in a waveguide are analyzed and compared with their equivalent plasma or resonant structure. Farfield radiation is optimized by analytic method and is simulated numerically. The metamaterial is shown to improve the directivity.

Citation: (See works that cites this article)
B.-I. Wu, W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A Study of Using Metamaterials as Antenna Substrate to Enhance Gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.

1. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simutaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 4, 77-79, 2001.

5. Weiland, T., R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, "Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments," J. Appl. Phys., Vol. 90, No. 10, 5419-5424, 2001.

6. Parazzoli, C. G., R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 107401, 2003.

7. Greegor, R. B., C. G Parazzoli, K. Li, and M. Tanielian, "Origin of dissipative losses in negative index of refraction materials," Appl. Phys. Lett., Vol. 82, No. 14, 2356-2358, 2003.

8. Li, K., J. McLean, R. B. Greegor, C. G Parazzoli, and M. Tanielian, "Free-space focused-beam characterization of left-handed materials," Appl. Phys. Lett., Vol. 82, No. 15, 2535-2537, 2003.

9. Veselago, V. G., "The electrodynamics of substances with simutaneously negative values of ε and μ," Soviet Physics USPEKHI, Vol. 10, No. 4, 509-514, 1968.

10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Physics-Condensed Matter, Vol. 10, 4785-4809, 1998.

11. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.

12. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW-media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett., Vol. 31, No. 2, 129-133, 2001.

13. Wu, B.-I., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wavenumber in a slab waveguide with negative permittivity and permeability," J. Appl. Phys., Vol. 93, No. 11, 9386-9389, 2003.

14. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," J. Appl. Phys., Vol. 90, No. 11, 5483-5486, 2001.

15. Lu, J., T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B.-I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Optics Express, Vol. 11, No. 7, 723-734, 2003.

16. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.

17. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.

18. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr., and J. A. Kong, "An improved method to retrieve the constitutive effective parameters of metamaterials," Accepted for publication in Phys. Rev. E..

19. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Model ling, Vol. 9, 259-319, 1996.

20. CST-Computer Simulation Technology, CST Microwave Studio® Advanced Topics, CST Microwave Studio® Advanced Topics, Version 4, 2002.

21. Kong, J. A., Electromagnetic Wave Theory, EMW, Cambridge, MA, 2000.

22. O'Brien, S. and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Physics-Condensed Matter, Vol. 14, No. 25, 6383-6394, 2002.

23. Huangfu, J., L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, 2004.

24. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed metamaterials composed of only S-shaped resonators," to be published..

© Copyright 2014 EMW Publishing. All Rights Reserved