PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 225-254

ANTENNA MODELING BY INFINITESIMAL DIPOLES USING GENETIC ALGORITHMS

By T. S. Sijher and A. A. Kishk

Full Article PDF (2,364 KB)

Abstract:
The binary Genetic Algorithm (GA) optimization method is used to simulate antennas from their near-field distribution by a set of infinitesimal dipoles. The infinitesimal dipoles could be of electric and/or magnetic types that produce the near field of the actual antenna and thus the same far field. The method is verified using near fields from known infinitesimal electric and/or magnetic dipoles. Some simple antennas have been simulated by infinitesimal dipoles such as dipole, loop, waveguide, and dielectric resonator antenna. The obtained equivalent dipoles from single frequency measurements are found to be valid for certain frequency band.

Citation: (See works that cites this article)
T. S. Sijher and A. A. Kishk, "Antenna Modeling by Infinitesimal Dipoles Using Genetic Algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801
http://www.jpier.org/PIER/pier.php?paper=0408181

References:
1. Petre, P. and T. K. Sakar, "Planar near-field to far-field transformation using an equivalent magnetic current approach," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1348-1356, 1992.
doi:10.1109/8.202712

2. Petre, P. and T. K. Sakar, "Planar near-field to far-field transformation using an array of dipole probes," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 4, 534-537, 1994.
doi:10.1109/8.286223

3. Sakar, T. K. and A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 566-573, 1999.
doi:10.1109/8.768793

4. Taagol, A. and T. K. Sakar, "Near-field to near/far-field geometry, utilizing an equivalent magnetic current," IEEE Transaction on Electromagnetic Compatability, Vol. 38, No. 8, 536-542, 1996.
doi:10.1109/15.536088

5. Laroussiand, R. and G. I. Costache, "Far-field predictions from near-field measurements using an exact integral equation solution," IEEE Transactions on Electromagnetic Computations, Vol. 36, No. 3, 189-195, 1994.
doi:10.1109/15.305453

6. Pierri, R., G. D'Elia, and F. Soldovieri, "A two probes scanning phaseless near-field far-field transformation technique," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 792-802, 1999.
doi:10.1109/8.774132

7. Bucci, O. M., G. D'Elia, and M. D. Migliore, "An effective near-field far-field transformation technique from truncated and inaccurate amplitude-only data," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 9, 1377-1385, 1999.
doi:10.1109/8.793317

8. McNay, D., E. Michielssen, R. L. Rogers, S. A. Taylor, M. Akhtari, and W. W. Sutherling, "Multiple source localization using genetic algorithms," J. Neurosci. Methods, Vol. 64, No. 2, 163-172, 1996.
doi:10.1016/0165-0270(95)00122-0

9. Regue, J. R., M. Ribo, J. M. Garrell, S. Sorroche, and J. Ayuso, "A genetic algorithm based method for predicting far-field emissions from near-field measurements," Proceedings 2000 IEEE EMC Symposium, 21-25, 2000.

10. Regue, J. R., M. Ribo, J. M. Garrell, and A. Martin, "A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization," IEEE Transactions on Electromagnetic Compatability, Vol. 43, No. 4, 520-530, 2001.
doi:10.1109/15.974631

11. WIPL-D — A General-Purpose Electromagnetic Simulator for Electromagnetic Modeling of Composite Metallic and Dielectric Structures., 11. WIPL-D — A General-Purpose Electromagnetic Simulator for Electromagnetic Modeling of Composite Metallic and Dielectric Structures. .

12. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

13. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons.

14. Linden, D. S., "Automated design and optimization of wire antennas using genetic algorithms," Ph.D. Thesis, No. 9, 1997.

15. http:Mancet.mit.edu/ ˜mbwall/presentations/lntroToGAs/P002. html, 15. http:Mancet.mit.edu/ ˜mbwall/presentations/lntroToGAs/P002. html .

16. http://cs.felk.cvut.cz/ ˜xobitko/ga, 16. http://cs.felk.cvut.cz/ ˜xobitko/ga .

17. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, John Wiley & Sons Inc., 1998.


© Copyright 2014 EMW Publishing. All Rights Reserved