PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 57 > pp. 55-84

ELECTROMAGNETIC SCATTERING BY A SET OF OBJECTS: AN INTEGRAL METHOD BASED ON SCATTERING OPERATOR

By D. Maystre

Full Article PDF (295 KB)

Abstract:
The paper presents the Scattering Operator Method, which is devoted to the problem of scattering from a set of N cylindrical ob jects. By contrast with the Scattering Matrix Method, which has been used by many groups in the last twenty years, it applies to any kind of cylinder shape, regardless of the relative location of the cylinders. The theory is based on a mathematical result: it is possible to define in the vicinity of the surface of each cylinder two complementary parts of the field: the total incident field and the field scattered by this cylinder. These two parts are the Calderon projectors of the values of the total fields on the surface of the cylinder. The validity of the method is checked on two examples. It is shown that the theory avoids some problems encountered in integral method like evaluations of singular or hypersingular integrals, or instabilities due to internal resonance of ob jects.

Citation: (See works that cites this article)
D. Maystre, "Electromagnetic Scattering by a Set of Objects: an Integral Method Based on Scattering Operator," Progress In Electromagnetics Research, Vol. 57, 55-84, 2006.
doi:10.2528/PIER05040901
http://www.jpier.org/PIER/pier.php?paper=0504091

References:
1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, University Press, Princeton, 1995.

2. Reinex, A. and B. Jecko, "A new photonic band gap equivalent model using Finite Difference Time Domain method," Annales des Télécommunications, Vol. 51, 656-662, 1996.

3. Chew, W. C., L. Gürel, Y. M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave-scattering solutions in two dimensions," IEEE Trans. on Microwave Theory and Techniques, Vol. 40, 716-723, 1992.
doi:10.1109/22.127521

4. Defos du Rau, M., "Diffusion electromagnétique dépendante dans les milieux hétérogènes denses. Présentation d'un modele mixte en vue de l'étude des matériaux hétérogènes," Ph.D. Thesis, 1997.

5. Elsherbeni, A. Z. and A. Kishk, "Modeling of cylindrical ob jects by circular dielectric or conducting cylinders," IEEE Trans. on Antennas and Propagation, Vol. 40, 96-99, 1992.
doi:10.1109/8.123363

6. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, 2526-2538, 1994.

7. Nicorovici, N. A., R. C. McPhedran, and L. C. Botten, "Photonic band gaps for arrays of perfectly conducting cylinders," Phys. Rev. E, Vol. 52, 1135-1145, 1995.
doi:10.1103/PhysRevE.52.1135

8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwaves Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

11. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

12. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 86, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

13. Garcia, N. and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett., Vol. 88, 1-4, 2002.

14. Maystre, D. and S. Enoch, "Perfect lenses made with left handed materials: Alice's mirror," J. Opt. Soc. Am. A, Vol. 21, 122-131, 2004.
doi:10.1364/JOSAA.21.000122

15. Chew, W. C., J. M. Jin, E. Michielsen, and J. Song (eds.), Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

16. Taflove, A., Computational Electrodynamics: The finite Difference Time Domain Method, Artech House, Boston, 1995.

17. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech House, Boston, 1990.

18. Silvester, P. P. and G. Pelosi, Finite Elements for Wave Electromagnetics, IEEE Press, New York, 1994.

19. Maystre, D. and P. Vincent, "Diffraction d'une onde électromagnétique plane par un objet cylindrique non infini- ment conducteur de section arbitraire," Opt. Commun., Vol. 5, 327-330, 1972.
doi:10.1016/0030-4018(72)90025-9

20. Abramovitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1970.

21. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Vol. 2, Interscience, New-York, 1962.

22. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, 2000.

23. Roger, A., "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix," Electromagnetics, Vol. 2, 69-83, 1982.

24. Maystre, D. and M. Cadilhac, "Singularities of the continuation of the fields and validity of Rayleigh's hypothesis," Journal of Mathematical Physics, Vol. 26, 2201-2204, 1985.
doi:10.1063/1.526847

25. Schwartz, L., Mathematics for the Physical Sciences, Addison-Wesley, Reading, Mass., 1966.

26. Cessenat, M., "The use of the calderon pro jectors and the capacity operators in scattering," Scattering in Volumes and Surfaces, 255-268, 1990.


© Copyright 2014 EMW Publishing. All Rights Reserved