PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 1-19

ELECTROMAGNETIC RADIATION FROM MOVING FRACTAL SOURCES: A PLANE-WAVE SPECTRAL APPROACH

By W. Arrighetti, P. DeCupis, and G. Gerosa

Full Article PDF (1,345 KB)

Abstract:
In this work the solution to the problem of electromagnetic radiation from (pre-)fractal antennas is performed by means of Plane- Wave field representation based on closed-form Fourier transforms of the self-similar current patterns. The generalization to the case of uniformly translating antennas is then accomplished through the Frame-Hopping Method by exploiting special-relativistic covariance properties of Plane-Wave spectra.

Citation:
W. Arrighetti, P. DeCupis, and G. Gerosa, "Electromagnetic Radiation from Moving Fractal Sources: a Plane-Wave Spectral Approach," Progress In Electromagnetics Research, Vol. 58, 1-19, 2006.
doi:10.2528/PIER05072001
http://www.jpier.org/PIER/pier.php?paper=0507201

References:
1. Werner, D. H. and R. Mittra (eds.), Frontiers in Electromagnetics, 1-3, Chps. 1-3, IEEE Press, Piscataway, NJ, 2000.

2. Jaggard, D. L. and X. Sun, "Reflection from fractal layers," Opt. Lett., Vol. 15, No. 24, 1428-1430, 1990.

3. Walker, J. G. and J. R. James, "Fractal volume antennas," Electron. Lett., Vol. 28, No. 11, 1536-1537, 1998.
doi:10.1049/el:19981135

4. Puente-Baliarda, C. and R. Pous, "Fractal design of multiband and low side-lobe arrays," IEEE Trans. Antennas Propagat., Vol. 44, No. 5, 1-10, 1996.
doi:10.1109/8.496259

5. Puente-Baliarda, C., J. Romeu, R. Pous, and A. Cardama, "On the behaviour of the Sierpinski multiband fractal antenna," IEEE Trans. Antennas Propagat., Vol. 46, No. 4, 517-524, 1998.
doi:10.1109/8.664115

6. Best, S. R., "On the significance of self-similar fractal geometry in determining the multi-band behaviour of the Sierpinski gasket antenna," IEEE Antennas Wirel. Propagat. Lett., Vol. 1, 22-25, 2002.
doi:10.1109/LAWP.2002.802579

7. Arrighetti, W. and G. Gerosa, "Spectral analysis of ˇSerpisnkij carpet-like prefractal waveguides and resonators," IEEE Microw. Wirel. Co. Lett., Vol. 15, No. 1, 30-32, 2005.
doi:10.1109/LMWC.2004.840972

8. Arrighetti, W. and G. Gerosa, "Can you hear the fractal dimension of a drum?'' Applied and Industrial Mathematics in Italy," ``Can you hear the fractal dimension of a drum? Applied and Industrial Mathematics in Italy, 65-75, 2005.

9. Giona, M., "Contour integrals and vector calculus on fractal curves and interfaces," Chaos Solitons and Fractals, Vol. 10, No. 8, 1349-1370, 1999.
doi:10.1016/S0960-0779(98)00105-2

10. Van Bladel, J., Relativity and Engineering, Springer-Verlag, New York, 1984.

11. De Zutter, D., "Green's functions for the Fourier spectra of the field form two-dimensional sources or scatterers in uniform motion," Radio Sci., Vol. 22, No. 7, 1197-1203, 1987.

12. Censor, D., "Scattering in velocity dependent systems," Radio Sci., Vol. 7, No. 2, 331-337, 1972.

13. De Cupis, P., "Radiation by a moving wire-antenna in the presence of interface," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 8, 1197-1203, 2000.

14. Censor, D., "The mathematical elements of relativistic free-space scattering," Journal of Electromagnetic Waves and Applications, Vol. 19, 907-923, 2005.
doi:10.1163/156939305775468697

15. Censor, D., "Free-space multiple scattering by moving ob jects," Journal of Electromagnetic Waves and Applications, Vol. 19, 1157-1170, 2005.
doi:10.1163/156939305775525990

16. Censor, D., I. Arnaoudov, and G. Venkov, "Differential- operators for and elliptical wave-functions in free-space relativistic scattering," Journal of Electromagnetic Waves and Applications, Vol. 19, 1251-1266, 2005.
doi:10.1163/156939305775526034

17. De Cupis, P., G. Gerosa, and G. Schettini, "Electromagnetic scattering by uniformly moving bodies," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 8, 1037-1062, 2000.

18. Barnsley, M. F., Fractals Everywhere, Academic Press, San Diego, 1988.

19. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, NY, 1990.

20. De Hoop, A. T., Handbook of Radiation and Scattering of Waves, Academic Press, London, 1995.

21. De Cupis, P., "A relativistic theory of partially-polarized waves," SIMAI 2002 Congress, 27-31, 2002.

22. Oppenheim, A. V. and P. W. Schaefer, Digital Signal Processing, Prentice-Hall, New Jersey, 1975.

23. Ben-Shimol, Y. and D. Censor, "Contribution to the problem of near-zone inverse doppler effect," Radio Sci., Vol. 33, 463-474, 1998.
doi:10.1029/98RS00033


© Copyright 2014 EMW Publishing. All Rights Reserved