PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 149-169

ACTIVE MICROWAVE IMAGING FOR BREAST CANCER DETECTION

By G. N. Bindu, S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew

Full Article PDF (1,234 KB)

Abstract:
Active microwave imaging is explored as an imaging modality for early detection of breast cancer. When exposed to microwaves, breast tumor exhibits electrical properties that are significantly different from that of healthy breast tissues. The two approaches of active microwave imaging - confocal microwave technique with measured reflected signals and microwave tomographic imaging with measured scattered signals are addressed here. Normal and malignant breast tissue samples of same person are sub jected to study within 30 minutes of mastectomy. Corn syrup is used as coupling medium, as its dielectric parameters show good match with that of the normal breast tissue samples. As bandwidth of the transmitter is an important aspect in the time domain confocal microwave imaging approach, wideband bowtie antenna having 2:1 VSWR bandwidth of 46% is designed for the transmission and reception of microwave signals. Same antenna is used for microwave tomographic imaging too at the frequency of 3000 MHz. Experimentally obtained time domain results are substantiated by finite difference time domain (FDTD) analysis. 2-D tomographic images are reconstructed with the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles.

Citation: (See works that cites this article)
G. N. Bindu, S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active Microwave Imaging for Breast Cancer Detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802
http://www.jpier.org/PIER/pier.php?paper=0508182

References:
1. Huynh, P. T., A. M. Jarolimek, and S. Dayee, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.

2. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten year risk of false positive screening mammography and clinical breast examinations," New England Journal of Medicine, Vol. 338, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601

3. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1854-1863, 2000.
doi:10.1109/22.883862

4. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near field imaging," IEEE Microwave magazine, Vol. 3, 48-56, 2002.
doi:10.1109/6668.990683

5. Fear, E. C., X. Lii, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, 812-821, 2002.
doi:10.1109/TBME.2002.800759

6. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1981.

7. Semenov, S. Y. et al., "Microwave tomography: Two-dimensional system for biological imaging," IEEE Transactions on Biomedical Engineering, Vol. 43, 869-877, 1996.
doi:10.1109/10.532121

8. Rangayyan, R. M., N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumor," IEEE Transactions on Medical Imaging, Vol. 16, 799-810, 1997.
doi:10.1109/42.650876

9. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype of active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1841-1853, 2000.
doi:10.1109/22.883861

10. Meaney, P. M., S. A. Pendergrass, M. W. Fanning, D. Li, and K. D. Paulsen, "Importance of using reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Application, Vol. 17, 333-355, 2003.
doi:10.1163/156939303322235851

11. Foti, S. J., R. P. Flam, J. F. Aubin, L. E. Larsen, and J. H. Jacobi, "A water immersed microwave phased array system for interrogation of biological targets," Medical Applications of Microwave Imaging, 148-166, 1986.

12. Bindu, G., A. Lonappan, V. Thomas, V. Hamsakutty, C. K. Aanandan, and K. T. Mathew, "Microwave characterization of breast phantom materials," Microwave and Optical Technology Letters, Vol. 43, 506-508, 2004.
doi:10.1002/mop.20517

13. Mathew, K. T. and U. Raveendranath, Sensors Update, 185-210, 185-210, Wiley-VCH, Germany, 1999.

14. Gabriel, S., R. W. Lau, and C. Gabriel, "Dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

15. Bindu, G. et al., "Wideband bowtie antenna with coplanar stripline feed," Microwave and Optical Technology Letters, Vol. 42, 222-224, 2004.
doi:10.1002/mop.20258

16. Bindu, G., A. Lonappan, C. K. Aanandan, and K. T. Mathew, "Wideband bowtie antenna for confocal microwave imaging," Asia Pacific Microwave Conference 2004, 2004.

17. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed focus and antenna array sensors," IEEE Transactions of Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

18. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Transactions of Antennas and Propagation, Vol. 47, 783-791, 1999.
doi:10.1109/8.774131

19. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility of breast tumor detection and localization," IEEE MTT-S Digest, 383-386, 2003.

20. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

21. Kosmas, P., C. M. Rappaport, and E. Bishop, "Modeling with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1890-1897, 2004.
doi:10.1109/TMTT.2004.831985

22. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency dependent finite-difference time domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, 222-227, 1990.
doi:10.1109/15.57116

23. Meaney, P. M., K. D. Paulsen, A. Hartov, and R. K. Crane, "Microwave imaging of tissue assessment: Initial evaluation in multitarget tissue equivalent phantoms," IEEE Transactions on Biomedical Engineering, Vol. 43, 878-890, 1996.
doi:10.1109/10.532122

24. Li, D., P. M. Meaney, T. Raynolds, S. Pendergrass, M. Fanning, and K. D. Paulsen, "A parallel-detection microwave spectroscopy system for breast imaging," Review of Scientific Instruments, Vol. 75, 2305-2313, 2004.
doi:10.1063/1.1764609

25. Meaney, P. M., K. D. Paulsen, and J. T. Chang, "Near- field microwave imaging of biologically based materials using a monopole transceiver system," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, 31-44, 1998.
doi:10.1109/22.654920

26. Bulyshev, A. E. et al., "Computational modeling of three- dimensional microwave tomography of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 48, 1053-1056, 2001.
doi:10.1109/10.942596

27. Taflove, A., Advances in Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House. Inc., Norwood, MA, 1998.

28. Chew, W. C. and Y. M. Wang, "Reconstruction of two- dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, 218-225, 1990.
doi:10.1109/42.56334

29. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Transactions on Antennas and Propagation, Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

30. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Physics in Medicine and Biology, Vol. 37, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014

31. HP 8510C Network Analyzer Operating and Programming Man- ual, Hewlett-Packard, Hewlett-Packard, 1988., 1988.


© Copyright 2014 EMW Publishing. All Rights Reserved