PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 64 > pp. 257-278

EFFECT OF ANTENNA ARRAY GEOMETRY AND ULA AZIMUTHAL ORIENTATION ON MIMO CHANNEL PROPERTIES IN URBAN CITY STREET GRID

By A. A. Abouda, H. M. El-Sallabi, and S. G. Häggman

Full Article PDF (449 KB)

Abstract:
Propagation environment and antenna array configuration have significant effect on spatial correlation properties of multipleinput multiple-output (MIMO) wireless communications channels. In this paper the effect of different antenna array geometries on MIMO channel properties is investigated in urban city street grid propagation environment. Four antenna array geometries with the same number of antenna elements and fixed inter-element spacing are considered, namely, uniform linear array (ULA), uniform circular array (UCA), uniform rectangular array (URA) and uniform cubic array (UCuA). The effect of ULA orientation in azimuthal plane on MIMO channel ergodic capacity is also investigated. Varying orientation angle from 0 to π at the two communication ends is considered. The investigation is carried out based on three dimensional (3D) spatial multi-ray realistic propagation channel model covering different propagation types. It is shown that the antenna array geometry have significant impact on MIMO channel properties. Under different propagation scenarios the ULA shows superiority to the other considered geometries in terms of the ergodic channel capacity and number of spatial parallel channels. However, this superiority depends largely on the array azimuthal orientation.

Citation: (See works that cites this article)
A. A. Abouda, H. M. El-Sallabi, and S. G. Häggman, "Effect of Antenna Array Geometry and Ula Azimuthal Orientation on MIMO Channel Properties in Urban City Street Grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801
http://www.jpier.org/PIER/pier.php?paper=06050801

References:
1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., Vol. 6, No. 3, 311-335, 1998.
doi:10.1023/A:1008889222784

2. Telatar, I. E., "Capacity of multi-antenna Gaussian channels," European Trans. Tel., Vol. 10, No. 6, 585-595, 1999.

3. Shui, D. S., G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Trans. on Commun., Vol. 48, No. 3, 502-513, 2000.
doi:10.1109/26.837052

4. McNamara, D. P., M. A. Beach, and P. N. Fletcher, Spatial correlation in indoor MIMO channels, Proc. of IEEE Personal Indoor and Mobile Radio Communications, Vol. 1, 290-294, 2002.

5. Forenza, A. and R. W. Heath Jr., Impact of antenna geometry on MIMO communication in indoor clustred channels, Proc. of IEEE Antennas andPr opagation Symposium, Vol. 2, 1700-1703, 2004.

6. Saleh, A. A. M. and R. A. Valenzuela, "A statistical model for indoor multipath propagation," IEEE Journal on SelectedA reas in Commun., Vol. 5, No. 2, 128-137, 1987.
doi:10.1109/JSAC.1987.1146527

7. Andersen, J. B. and B. N. Getu, The MIMO cube — a compact MIMO antenna, Proc. of IEEE Wireless Personal Multimedia Commun., Vol. 1, 112-114, 2002.

8. Li, X. and Z. Nie, "Effect of array orientation on performance of MIMO wirelss channels," IEEE Antenna andPr opagation Letters, Vol. 3, 368-372, 2004.

9. Almers, P., F. Tufvesson, P. Karlsson, and A. F. Molisch, The effect of horizontal array orientation on MIMO channel capacity, Proc. of IEEE Vehicular Technology Conference VTC03, 34-38, 2003.

10. Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, "A stochastic MIMO radio channel model with experimental validation," IEEE Journal on SelectedA reas in Commun., Vol. 20, No. 6, 1211-1226, 2002.
doi:10.1109/JSAC.2002.801223

11. Abouda, A. A, N. G. Tarhuni, and H. M. El-Sallabi, Modelbased investigation on MIMO channel capacity in main street of urban microcells, Proc. of IEEE Antennas andPr opagation Symposium, 313-316, 2005.

12. TR 101 112 V3.2.0 (1998-04) Technical Report: Universal Mobile Telecommunications System (UMTS); Selection procedures for the choice of radio transmission technologies of the UMTS (UMTS 30.03 version 3.2.0),.

13. Gans, M. J., N. Amitay, Y. S. Yeh, H. Xu, T. C. Damen, R. A. Valenzuela, T. Sizer, R. Storz, D. Taylor, W. M. MacDonald, C. Tran, and A. Adamiecki, "Outdoor BLAST measurement system at 2.44 GHz: calibration and initial results," IEEE Journal on SelectedA reas in Commun., Vol. 20, No. 3, 570-583, 2002.
doi:10.1109/49.995516

14. Gesbert, D., H. Bolcskei, D. Gore, and A. Paulraj, "Outdoor MIMO wireless channels: models and performance prediction," IEEE Trans. on Commun., Vol. 50, 1926-1934, 2002.
doi:10.1109/TCOMM.2002.806555

15. El-Sallabi, H. M. and P. Vainikainen, "Physical modeling of lineof- sight wideband propagation in a city street for microcellular communications," Journal of Electromagnetic Waves andApplications, Vol. 14, 905-927, 2000.

16. El-Sallabi, H. M. and P. Vainikainen, "Radio wave propagation in perpendicular streets of urban street grid for microcellular communications. Part I: Channel modeling," Progress In Electromagnetics Research, Vol. PIER 40, 229-254, 2003.
doi:10.2528/PIER02112502

17. Zheng, L. and D. N. Tse, "Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels," IEEE Trans. on Information Theory, Vol. 49, No. 5, 1073-1096, 2003.
doi:10.1109/TIT.2003.810646

18. Andersen, J. B., "Array gain and capacity for known random channels with multiple element arrays at both ends," IEEE Journal on SelectedA reas in Commun., Vol. 18, 2172-2178, 2000.
doi:10.1109/49.895022

19. Foschini, G. J., G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, "Simplified processing for high spectral efficiency wireless communication employing multi-element arrays," IEEE Journal on SelectedA reas in Commun., Vol. 17, 1841-1852, 1999.
doi:10.1109/49.806815

20. Carl Johnk, T. A., Engineering Electromagnetic Fields and Waves, 637, John Wiley and Sons Inc., 1988.

21. Herdin, M., H. ¨ Ozcelik, H. Hofstetter, and E. Bonek, Linking reduction in measured MIMO capacity with dominant wave propagation, Proc. of International Conference on Telecommunications ICT03, 1526-1530, 2003.

22. Driessen, P. and G. J. Foschini, "On the capacity formula for multiple-input multiple-ouput wireless channels: A geometric interpretation," IEEE Trans. on Commun., Vol. 47, No. 2, 173-176, 1999.
doi:10.1109/26.752119


© Copyright 2014 EMW Publishing. All Rights Reserved