PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 63 > pp. 1-20

NATURAL-MODE REPRESENTATION FOR THE FIELD REFLECTED BY AN INHOMOGENEOUS CONDUCTOR-BACKED MATERIAL LAYER - TE CASE

By E. J. Rothwell

Full Article PDF (209 KB)

Abstract:
The transient plane-wave field reflected by a conductorbacked, inhomogeneous, planar material layer is considered. The reflected field is written as a natural-mode expansion, and the natural resonance frequencies of the slab are found by solving a homogeneous integral equation for the field within the slab. Several examples are considered, and the natural mode series is verified by comparison to the inverse fast-Fourier transform of the frequency-domain reflected field.

Citation: (See works that cites this article)
E. J. Rothwell, "Natural-Mode Representation for the Field Reflected by an Inhomogeneous Conductor-Backed Material Layer - TE Case," Progress In Electromagnetics Research, Vol. 63, 1-20, 2006.
doi:10.2528/PIER06051801
http://www.jpier.org/PIER/pier.php?paper=06051801

References:
1. Hashish, E. A., "Forward and inverse scattering from an inhomogeneous dielectric slab," J. of Electromagn. Waves and Appl., Vol. 17, No. 5, 719-736, 2003.
doi:10.1163/156939303322226374

2. Umashankar, K., S. Chaudhuri, and A. Taflove, "Finite-difference time-domain formulation of an inverse scheme for remote sensing of inhomogeneous lossy layered media: Part I-one dimensional case," J. of Electromagn. Waves and Appl., Vol. 17, No. 5, 719-736, 2003.
doi:10.1163/156939303322226374

3. He, S., P. Fuks, and G. W. Larson, "An optimization approach to time-domain electromagnetic inverse problem for a stratified dispersive and disipative slab," IEEE Trans. Antennas and Propagat., Vol. 44, No. 9, 1277-1282, 1996.
doi:10.1109/8.535386

4. Kim, Y., D. L. Jaggard, and N. Cho, "Time-domain inverse scattering using a nonlinear renormalization technique," J. of Electromagn. Waves and Appl., Vol. 4, No. 2, 99-111, 1990.

5. Tijhuis, A., "Iterative determination of permittivity and conductivity profiles of a dielectric slab in the time domain," IEEE Trans. Antennas and Propagat., Vol. 29, No. 2, 239-245, 1981.
doi:10.1109/TAP.1981.1142565

6. Bolomey, J.-C. and C. Durix, "and D. Lesselier Determination of conductivity profiles by time-domain reflectometry," IEEE Trans. Antennas and Propagat., Vol. 27, No. 2, 244-248, 1979.
doi:10.1109/TAP.1979.1142067

7. Stenholm, G., E. J. Rothwell, D. P. Nyquist, L. C. Kempel, and L. L. Frasch, "E-pulse diagnostics of simple layered materials," IEEE Trans. Antennas and Propagat., Vol. 51, No. 12, 3221-3227, 2003.
doi:10.1109/TAP.2003.820980

8. Oh, J., E. J. Rothwell, D. P. Nyquist, and M. J. Havrilla, "Natural resonance representation of the transient field reflected by a conductor-backed lossy layer," J. of Electromagn. Waves and Appl., Vol. 17, No. 5, 673-694, 2003.
doi:10.1163/156939303322226347

9. Oh, J., E. J. Rothwell, B. T. Perry, and M. J. Havrilla, "Natural resonance representation of the transient field reflected by a conductor-backed layer of Debye material," J. of Electromagn. Waves and Appl., Vol. 18, No. 5, 571-589, 2004.
doi:10.1163/156939304774114637

10. Perry, B. T., "Natural resonance representation of the transient field reflected from a multi-layered material," Ph.D. Dissertation, No. 8, 2005.

11. Tijhuis, A. G., "SEM approach to the transient scattering by an inhomogeneous, lossy dielectric slab; Part 2: The inhomogeneous case," Wave Motion, Vol. 6, 167-182, 1984.
doi:10.1016/0165-2125(84)90013-1

12. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1965.

13. Gradsteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, London, UK, 1994.

14. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using Taylor's series expansion," IEEE Trans. Antennas and Propagat., Vol. 54, No. 1, 130-135, 2006.
doi:10.1109/TAP.2005.861577

15. Chew, W., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1999.

16. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1990.

17. Baum, C. E., "The singularity expansion method," Transient Electromagnetic Fields, 1976.


© Copyright 2014 EMW Publishing. All Rights Reserved