PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 63 > pp. 319-335

FRACTIONAL CURL OPERATOR AND FRACTIONAL WAVEGUIDES

By A. Hussain, S. Ishfaq, and Q. A. Naqvi

Full Article PDF (372 KB)

Abstract:
Fractional curl operator has been utilized to study the fractional waveguide. The fractional waveguide may be regarded as intermediate step between the two given waveguides. The two given waveguides are related through the principle of duality. Behavior of field lines in fractional waveguides are studied withresp ect to fractional parameter α.

Citation: (See works that cites this article)
A. Hussain, S. Ishfaq, and Q. A. Naqvi, "Fractional Curl Operator and Fractional Waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604
http://www.jpier.org/PIER/pier.php?paper=06060604

References:
1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

2. Debnath, L., "Recent applications of fractional calculus to science and engineering," IJMMS, Vol. 54, 3413-3442, 2003.
doi:10.1155/S0161171203301486

3. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

4. Ozaktas, H. M., Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, New York, 2001.

5. Naqvi, Q. A., G. Murtaza, and A. A. Rizvi, "Fractional dual solutions to Maxwell equations in homogeneous chiral medium," Optics Communications, Vol. 178, 27-30, 2000.
doi:10.1016/S0030-4018(00)00651-9

6. Lakhtakia, A., "A representation theorem involving fractional derivatives for linear homogeneous chiral media," Microwave Opt. Tech. Lett., Vol. 28, 385-386, 2001.
doi:10.1002/1098-2760(20010320)28:6<385::AID-MOP1048>3.0.CO;2-L

7. Veliev, E. I. and N. Engheta, "Fractional curl operator in reflection problems," 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, No. 9, 14-17, 2004.

8. Naqvi, Q. A. and M. Abbas, "Complex and higher order fractional curl operator in electromagnetics," Optics Communications, Vol. 241, 349-355, 2004.
doi:10.1016/j.optcom.2004.07.028

9. Naqvi, Q. A. and M. Abbas, "Fractional duality and metamaterials withnegativ e permittivity and permeability," Optics Communications, Vol. 227, 143-146, 2003.
doi:10.1016/j.optcom.2003.08.041

10. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetic Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801

11. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional non-symmetric transmission line," Progress in Electromagnetic Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801

12. Naqvi, S. A., Q. A. Naqvi, and A. Hussain, "Modelling of transmission through a chiral slab using fractional curl operator," Accepted for publication in Optics Communications, 2006.


© Copyright 2014 EMW Publishing. All Rights Reserved