PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 71-80

MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR'S ACTIVE REGION

By A. A. Pavel, N. E. Islam, A. K. Sharma, C. S. Mayberry, and S. L. Lucero

Full Article PDF (2,306 KB)

Abstract:
Geometry of grating structure has been analyzed to maximize electromagnetic energy deposition onto the active region of a silicon photodetector. The concept of Brewster angle to minimize reflection from the grating surface and a differences-in-time technique to focus incoming electromagnetic radiation on the substrate has been applied to optimize the grated structure that amplifies transmitted energy through grating-substrate interface. The computed electric field at the interface for the new grating geometry has been found to be approximately 1.5 times higher than that of a square-shape gratings reported earlier. Also the average power depositions and electric field distributions on the grating-substrate interfaces have been studied which revealed the superiority of the proposed optimum structure.

Citation:
A. A. Pavel, N. E. Islam, A. K. Sharma, C. S. Mayberry, and S. L. Lucero, "Minimizing Reflection and Focussing of Incident Wave to Enhance Energy Deposition in Photodetector's Active Region," Progress In Electromagnetics Research, Vol. 65, 71-80, 2006.
doi:10.2528/PIER06062605
http://www.jpier.org/PIER/pier.php?paper=06062605

References:
1. Ho, Y. L. and K. S. Wong, "Bandwidth enhancement in silicon metal-semiconductor-metal photodetector by trench formation," IEEE Photon. Technol. Lett., Vol. 8, 1064-1066, 1996.
doi:10.1109/68.508739

2. Liu, M. Y., E. Chen, and S. Y. Chou, "140-GHz metalsemiconductor- metal photodetectors on silicon-on-insulator substrate with a scaled active layer," Appl. Phys. Lett., Vol. 65, 887-888, 1994.
doi:10.1063/1.112190

3. Mott, N. F. and E. A. Davis, Electronic Processes in Noncrystalline Materials, 2nd ed., Oxford University Press, Oxford, U.K., 1979.

4. Sharma, A. K., S. H. Zaidi, P. C. Logofatu, and S. R. J. Brueck, "Optical and electrical proprties of nanostructured metalsemiconductor- metal photo detectors," IEEE Journal of Quantum Electron., Vol. 38, 1651-1660, 2002.
doi:10.1109/JQE.2002.805112

5. Kranthi, N. S., M. O. Nizam, P. Kirawanich, N. E. Islam, A. K. Sharma, and S. L. Lucero, "Fields analysis of enhanced charge collection in nanoscale grated photo detectors," Appl. Phys. Lett., Vol. 87, 244101, 2005.
doi:10.1063/1.2143137

6. Kache, S., N. S. Kranthi, M. O. Nizam, P. Kirawanich, R. W. McLaren, N. E. Islam, A. K. Sharma, C. S. Mayberry, and S. L. Lucero, "Field analysis to optimize charge collection in a sub-micron grated metal-semiconductor-metal photodetector," Progress In Electromagnetics Research, Vol. 63, 75-88, 2006.
doi:10.2528/PIER06041803

7. Kraus, J. D. and D. A. Fleisch, Electromagnetics:With Applications, 5th ed., WCB/McGraw-Hill, Boston, 1999.

8. Weiland, T., "A discretization method for the solution of Maxwell's equations for six-components fields," Electrostatics and Communications, Vol. 31, 116-120, 1977.

9. User Manual, CST Microwave Studio 5.0, Sonnet Software, Inc., 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved