PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 137-155

AN ANALYTICAL INVESTIGATION OF THE RADIATION CHARACTERISTICS OF INFINITESIMAL DIPOLE ANTENNA EMBEDDED IN PARTIALLY REFLECTIVE SURFACES TO OBTAIN HIGH DIRECTIVITY

By A. Pirhadi and M. Hakkak

Full Article PDF (532 KB)

Abstract:
The far-field radiation characteristics of an infinitesimal dipole embedded between two partially reflective surfaces (PRS) to obtain high directivity are studied analytically. The analysis is based on integral summation of spectral radiation fields of the source in cylindrical coordinate, so that we can find the effects of transmission and reflection coefficients of PRS on all components of primary radiation source. The analysis shows that due to the existence of TEz and TMz modes for horizontal dipole source, the effects of PRSs are different for each mode. Also, this study shows that by adjusting the spacing of the plates, it is possible to achieve high directive multibeam patterns.

Citation: (See works that cites this article)
A. Pirhadi and M. Hakkak, "An Analytical Investigation of the Radiation Characteristics of Infinitesimal Dipole Antenna Embedded in Partially Reflective Surfaces to Obtain High Directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501
http://www.jpier.org/PIER/pier.php?paper=06081501

References:
1. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic bandgap antennas," IEEE, Vol. 47, No. 11, 2115-2122, 1999.

2. Cheype, C., C. Serier, M. Thevenot, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

3. Maagt, P. D., R. Gonzalo, Y. C. Vardaxoglou, and J. M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave application," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

4. Chang, C. C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetics Research, Vol. 41, 211-235, 2003.
doi:10.2528/PIER02010890

5. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High gain 1-D resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095

6. Lee, Y. J. U., J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2005.
doi:10.1002/mop.20196

7. Lee, Y. J. U., J. Yeo, R. Mittra, Y. Lee, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defect for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

8. Akalin, T., J. Danglot, O. Vanbesien, and Lippens, "A highly directive dipole antenna embedded in a Fabry-Perot type cavity," IEEE Microwave and Wireless Components, Vol. 12, No. 2, 48-50, 2002.
doi:10.1109/7260.982873

9. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, High-gain subwavelength resonant vavity antennas based on metamaterial ground plane, IEE Proc. on Microwave, Vol. 153, No. 1, 2006.

10. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transaction on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

11. Boutayeb, H. and T. A. Denidni, "Internally excited FabryCperot type cavity: power normalization and directivity evaluation," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 2006.

12. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. A. Denidi, "Directivity of an antenna embedded inside a Fabry-Perot cavity: analysis and design," Microwave and Optical Technology Letters, Vol. 48, No. 1, 2006.
doi:10.1002/mop.21249

13. Boutayeb, H., K. Mahdjoubi, and A. C. Tarot, "Multi-layer crystal of metallic wires: analysis of the transmission coefficient for outside and inside excitation," Progress In Electromagnetics Research, Vol. 59, 299-324, 2006.
doi:10.2528/PIER05102404

14. Kong, J. A., Electromagnetic Wave Theory, Wiley Interscience, New York, 1990, EMW Publishing, Cambridge, 2000.

15. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

16. Balanis, C., Antenna Theory Analysis and Design, John Wiely & Sons, New Jersey, 2005.

17. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801


© Copyright 2014 EMW Publishing. All Rights Reserved