PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 103-123

COMPLETE MODE SPECTRUM OF A GROUNDED DIELECTRIC SLAB WITH DOUBLE NEGATIVE METAMATERIALS

By W. Shu and J.-M. Song

Full Article PDF (237 KB)

Abstract:
The properties of a grounded dielectric slab with double negative (DNG) metamaterials are investigated in this paper. Dramatically different dispersion curves of evanescent surface modes (electromagnetic fields exponentially decay both in air and inside the slab) are observed. They are highly dependent on the medium parameters. As the counterpart of the improper complex leaky modes in a double positive (DPS) medium, the complex modes in a DNG medium are proved to be exclusively proper. They have exponentially decaying fields in the air region and are termed complex surface modes. It is found that there are an infinite number of complex surface modes and they cannot be suppressed. The Poynting vectors of complex surface modes are studied and it is proved that their integrals along the transverse direction are simply zero. The complete mode spectrum of the dielectric slab for both DPS and DNG media are tabled and compared. Surface wave suppression is discussed and its necessary and sufficient conditions are presented.

Citation: (See works that cites this article)
W. Shu and J.-M. Song, "Complete Mode Spectrum of a Grounded Dielectric Slab with Double Negative Metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.
doi:10.2528/PIER06081601
http://www.jpier.org/PIER/pier.php?paper=06081601

References:
1. Vesalago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 6, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 10, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 5, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 4, 72-79, 2001.
doi:10.1126/science.1058847

7. Smith, D. R. and N. Kroll, "Negative refractive index in lefthanded materials," Phys. Rev. Lett., Vol. 85, No. 10, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

8. Markos, P. and C. M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Phys. Rev. E, Vol. 65, No. 3, 036622, 2002.
doi:10.1103/PhysRevE.65.036622

9. Alù, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 10, 2558-2571, 2003.

10. Alù, A. and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," Negative-Refraction Metamaterials: F undamental Principles and Applications, 339-380, 2005.

11. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 5, 1159-1166, 2004.

12. Lin, I.-H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

13. Mittra, R., K. Rajab, and M. T. Lanagan, Size reduction of microstrip antennas using metamaterials, Proc. IEEE AP-S, No. 7, 2005.

14. Erentok, A. and R. W. Ziolkowski, Development of epsilonnegative (ENG) metamaterials for efficient electrically small antenna applications, Proc. IEEE AP-S, No. 7, 2005.

15. Cory, H. and A. Barger, "Surface-wave propagation along a metamaterial slab," Microwave Opt. Technol. Lett., Vol. 38, No. 9, 392-395, 2003.
doi:10.1002/mop.11070

16. Dong, H. and T. X. Wu, "Analysis of discontinuities in doublenegative (DNG) slab waveguides," Microwave Opt. Technol. Lett., Vol. 39, No. 12, 483-488, 2003.
doi:10.1002/mop.11254

17. Nefedov, I. S. and S. A. TretyaKov, "Waveguide containing a backward-wave slab," Radio Sci., Vol. 38, 1101-1109, 2003.
doi:10.1029/2003RS002900

18. Wu, B.-I., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," J. Appl. Phys., Vol. 93, No. 6, 9386-9388, 2003.
doi:10.1063/1.1570501

19. Shadrivov, I. W., A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E, Vol. 67, No. 5, 057602, 2003.
doi:10.1103/PhysRevE.67.057602

20. Suwailam, M. M. B. and Z. D. Chen, "Surface waves on a grounded double-negative (DNG) slab waveguide," Microwave Opt. Technol. Lett., Vol. 44, No. 3, 494-498, 2005.
doi:10.1002/mop.20677

21. Li, C., Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203

22. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of leaky-wave propagation in metamaterial grounded slabs excited by a dipole source," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 32-44, 2005.
doi:10.1109/TMTT.2004.839346

23. Baccarelli, P. P., Burghignoli, G. Lovat, and S. Paulotto, "Surfacewave suppression in a double-negative metamaterial grounded slab," IEEE Antennas Wireless Propag. Lett., Vol. 2, 269-272, 2003.
doi:10.1109/LAWP.2003.819679

24. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1431-1442, 2005.
doi:10.1109/TMTT.2005.845208

25. Landau, L., E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media, 2nd edition, Butterworth-Heinenann, Oxford, England, 1984.

26. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE Press, Piscataway, NJ, 1991.

27. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

28. Oliner, A. A., "Leakage from higher modes on microstrip line with applications to antennas," Radio Sci., Vol. 22, 907-912, 1987.

29. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, NJ, 1989.

30. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.2528/PIER03102102

31. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics, Springer, NY, 2002.

32. Rozzi, T., L. Pierantoni, and M. Farina, "General constraints on the propagation of complex waves in closed lossless isotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 5, 512-516, 1998.
doi:10.1109/22.668649

33. Freire, M. J., F. Mesa, and M. Horno, "Power characteristics of complex modes in both reciprocal and nonreciprocal boxed microstrip lines," Microwave Opt. Technol. Lett., Vol. 18, No. 8, 389-394, 1998.
doi:10.1002/(SICI)1098-2760(19980820)18:6<389::AID-MOP8>3.0.CO;2-9

34. Tamir, T. and A. A. Oliner, The spectrum of electromagnetic waves guided by a plasma layer, Proceedings of the IEEE, Vol. 51, No. 2, 317-332, 1963.

35. Laxpati, S. R. and R. Mittra, "Energy considerations in open and closed waveguides," IEEE Trans. Antenna and Propag., Vol. 18, No. 11, 883-890, 1965.
doi:10.1109/TAP.1965.1138546


© Copyright 2014 EMW Publishing. All Rights Reserved