Vol. 69
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-19
A Possible Remedy for the Oscillations Occurring in Thin-Wire MoM Analysis of Cylindrical Antennas
By
, Vol. 69, 77-92, 2007
Abstract
Approximate, non-singular kernels are often used in moment-method formulations coping with thin-wire structures. Their use has important consequences, one of which is the appearance of oscillations in the computed currents when the number of sub-domain basis functions is sufficiently large. These oscillations are not due to round-off errors. In this paper, a smoothing procedure is used in conjunction with Galerkin's formulation with piecewise sinusoidal functions, which yields non-oscillating current distributions. Special attention is paid to the solutions over a wide range of discretization levels (number of basis/testing functions), in order to examine and illustrate the similarities and differences between results obtained with and without the proposed remedy. Finally, a comparison with results derived with the exact kernel is provided.
Citation
Panagiotis Papakanellos, and George Fikioris, "A Possible Remedy for the Oscillations Occurring in Thin-Wire MoM Analysis of Cylindrical Antennas," , Vol. 69, 77-92, 2007.
doi:10.2528/PIER06120502
References

1. Harrington, R. F., Field Computation by Moment Methods, MacMillan, New York, 1968.

2. Fikioris, G. and T. T. Wu, "On the application of numerical methods to Hallen's equation," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 3, 383-392, 2001.
doi:10.1109/8.918612

3. Fikioris, G., "The approximate integral equation for a cylindrical scatterer has no solution," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 9, 1153-1159, 2001.

4. Fikioris, G., J. Lionas, and C. G. Lioutas, "The use of the frill generator in thin-wire integral equations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1847-1854, 2003.
doi:10.1109/TAP.2003.815412

5. King, R. W. P., G. J. Fikioris, and R. B. Mack, Cylindrical Antennas and Arrays, Chs. 1 and 13, Cambridge University Press, Cambridge, 2002.

6. Hallen, E., "Theoretical investigations into transmitting and receiving antennae," Nova Acta Regiae Societatis Scientiarum Upsaliensis IV, Vol. 11, 1-44, 1938.

7. Infeld, L., "The influence of the width of the gap upon the theory of antennas," Quarterly of Applied Mathematics, Vol. V, No. 2, 113-132, 1947.

8. King, R. W. P., "The linear antenna-eighty years of progress," Proceedings of the IEEE, Vol. 55, No. 1, 2-16, 1967.

9. Strait, B. J. and A. T. Adams, "On contributions at Syracuse University to the moment method," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, No. 4, 228-237, 1980.
doi:10.1109/TEMC.1980.303860

10. Taylor, C. D. and D. R. Wilton, "The extended boundary condition solution of the dipole antenna of revolution," IEEE Transactions on Antennas and Propagation, Vol. 20, No. 6, 772-776, 1972.
doi:10.1109/TAP.1972.1140316

11. Miller, E. K. and F. J. Deadrick, "Some computational aspects of thin-wire modeling," Numerical and Asymptotic Techniques in Electromagnetics, 1975.

12. Burke, G. J., "The Numerical Electromagnetics Code (NEC)," Application of the Method of Moments to Electromagnetic Fields, 1980.

13. Poggio, A. J. and E. K. Miller, "Techniques for low-frequency problems," Antenna Handbook, Vol. I: Antenna Fundamentals and Mathematical Techniques, 1993.

14. Bancroft, R., Understanding Electromagnetic Scattering Using the Moment Method: A Practical Approach, Ch. 3, Artech House, Norwood, MA, 1996.

15. Imbriale, W. A. and P. G. Ingerson, "On numerical convergence of moment solutions of moderately thick wire antennas using sinusoidal basis functions," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 363-366, 1973.
doi:10.1109/TAP.1973.1140478

16. Klein, C. A. and R. Mittra, "The effect of different testing functions in the moment method solution of thin-wire antenna formulations," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 2, 258-261, 1975.
doi:10.1109/TAP.1975.1141033

17. Butler, C. M. and D. R. Wilton, "Analysis of various numerical techniques applied to thin-wire scatterers," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 534-540, 1975.
doi:10.1109/TAP.1975.1141108

18. Sarkar, T. K., "A study of the various methods for computing electromagnetic field utilizing thin wire integral equations," Radio Science, Vol. 18, No. 1, 29-38, 1983.

19. Sarkar, T. K., "A note on the choice weighting functions in the method of moments," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 4, 436-441, 1985.
doi:10.1109/TAP.1985.1143590

20. Sarkar, T. K., A. R. Djordjevic, and E. Arvas, "On the choice of expansion and weighting functions in the numerical solution of operator equations," IEEE Transactions on Antennas and Propagatation, Vol. 33, No. 9, 988-996, 1985.
doi:10.1109/TAP.1985.1143707

21. Peterson, A. F., "Difficulties encountered when attempting to validate thin-wire formulations for linear dipole antennas," Applied Computational Electromagnetics Society Journal, Vol. 4, No. 3, 25-40, 1989.

22. Schelkunoff, S. A., Advanced Antenna Theory, Section 5.5, Wiley, New York, 1952.

23. Wu, T. T., "Introduction to linear antennas," Antenna Theory, 1969.

24. Fikioris, G. and C. A. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinitelength dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
doi:10.2528/PIER05031701

25. Papakanellos, P. J. and C. N. Capsalis, "On the combination of the method of auxiliary sources with reaction matching for the analysis of thin cylindrical antennas," International Journal of Numerical Modeling, Vol. 17, No. 5, 433-449, 2004.
doi:10.1002/jnm.549

26. Papakanellos, P. J., I. I. Heretakis, P. K. Varlamos, and C. N. Capsalis, "A combined method of auxiliary sources-reaction matching approach for analyzing moderately large-scale arrays of cylindrical dipoles," Progress In Electromagnetics Research, Vol. 59, 51-67, 2006.
doi:10.2528/PIER05091501

27. Fikioris, G., "On two types of convergence in the method of auxiliary sources," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2022-2033, 2006.
doi:10.1109/TAP.2006.877171

28. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Ch. 4, Cambridge University Press, New York, 1992.

29. Wu, D., N. Inagaki, and N. Kikuma, "Hallen-type integral equation for cylindrical antennas with finite gap excitation," IEICE Transactions on Communications, Vol. E-82B, No. 12, 2145-2152, 1999.

30. Quesada-Pereira, F. D., J. L. G´omez-Tornero, D. CaËœnete- Rebenaque, J. Pascual-García, and A. ´Alvarez-Melc´on, "Analysis of thick-wire antennas using a novel and simple kernel treatment," Microwave and Optical Technology Letters, Vol. 46, No. 4, 410-417, 2005.
doi:10.1002/mop.21002