PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 69 > pp. 127-144

NEURAL MODELS FOR COPLANAR STRIP LINE SYNTHESIS

By C. Yildiz, K. Guney, M. Turkmen, and S. Kaya

Full Article PDF (186 KB)

Abstract:
Simple and accurate models based on artificial neural networks (ANNs) are presented to accurately determine the physical dimensions of coplanar strip lines (CPSs). Five learning algorithms, Levenberg-Marquardt (LM), bayesian regularization (BR), quasi- Newton (QN), conjugate gradient with Fletcher (CGF), and scaled conjugate gradient (SCG), are used to train the neural models. The neural results are compared with the results of the quasi-static analysis and the synthesis formulas available in the literature. The accuracy of the neural model trained by LM algorithm is found to be better than 0.24% for 10614 CPS samples.

Citation: (See works that cites this article)
C. Yildiz, K. Guney, M. Turkmen, and S. Kaya, "Neural Models for Coplanar Strip Line Synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802
http://www.jpier.org/PIER/pier.php?paper=06120802

References:
1. Chiou, H. K., C. Y. Chang, and H. H. Lin, "Balun design for uniplanar broad band double balanced mixer," Electronic Letters, Vol. 31, 2113-2114, 1995.
doi:10.1049/el:19951404

2. Wen, C. P., "Coplanar waveguide: A surface transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

3. Ghione, G., "A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1499-1510, 1993.
doi:10.1109/22.245668

4. Chen, E. and S. Y. Chou, "Characteristic of coplanar transmission lines on multilayer substrates: Modelling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 939-945, 1997.
doi:10.1109/22.588606

5. Bedair, S. S., "Characteristic of some asymmetrical coupled transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 108-110, 1984.
doi:10.1109/TMTT.1984.1132620

6. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electronic Letters, Vol. 20, 179-181, 1984.
doi:10.1049/el:19840120

7. Knorr, J. B. and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624

8. Phatak, D. S. and A. P. Defonzo, "Dispersion characteristic of optically excited coplanar striplines," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 654-661, 1990.
doi:10.1109/22.54935

9. Phatak, D. S., N. K. Das, and A. P. Defonzo, "Dispersion characteristic of optically excited coplanar striplines: Comprehensive full-wave analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1719-1730, 1990.
doi:10.1109/22.60020

10. Deng, T. Q., M. S. Leong, P. S. Kooi, and T. S. Yeo, "Synthesis formulas for coplanar lines in hybrid and monolithic MICs," Electronic Letters, Vol. 32, 2253-2254, 1996.
doi:10.1049/el:19961521

11. Yildiz, C., "New and very simple synthesis formulas for coplanar strip line," Microwave and Optical Technology Letters, Vol. 44, 199-202, 2005.
doi:10.1002/mop.20586

12. Yildiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave and Optical Technology Letters, Vol. 48, 1133-1137, 2006.
doi:10.1002/mop.21559

13. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Comp., New York, USA, 1994.

14. Watson, M. and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 2515-2523, 1997.
doi:10.1109/22.643868

15. Sagiroglu, S. and C. Yildiz, "A multilayered perceptron neural network for a micro-coplanar strip line," Electromagnetics, Vol. 22, 553-563, 2002.
doi:10.1080/02726340290084111

16. Yildiz, C., S. Gultekin, K. Guney, and S. Sagiroglu, "Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor," AE ¨ U-International Journal of Electronics and Communications, Vol. 56, 396-406, 2002.
doi:10.1078/1434-8411-54100128

17. Yildiz, C., S. Sagiroglu, and O. Saracoglu, "Neural models for coplanar waveguides with a finite dielectric thickness," Int. J. RF and Microwave CAE, Vol. 13, 438-446, 2003.
doi:10.1002/mmce.10104

18. Yildiz, C., S. Sagiroglu, O. Saracoglu, and M. Turkmen, "Neural models for an asymmetric coplanar stripline with an infinitely wide strip," International Journal of Electronics, Vol. 90, 509-516, 2003.
doi:10.1080/00207210310001621554

19. Yildiz, C., S. Sagiroglu, and M. Turkmen, "Neural model for coplanar waveguide sandwiched between two dielectric substrates," IEE Proc-Microwaves Antennas and Propagation, Vol. 151, 7-12, 2004.
doi:10.1049/ip-map:20040249

20. Devabhaktuni, K., M. C. E. Yagoub, Y. Fang, J. Xu, and Q. J. Zhang, "Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques," Int. J. RF and Microwave CAE, Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I

21. Watson, P. M., C. Choonsik, and K. C. Gupta, "Electromagneticartificial neural network model for synthesis of physical dimensions for multilayer asymmetric coupled transmission structures," Int. J. RF and Microwave CAE, Vol. 9, 175-186, 1999.
doi:10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P

22. Salivahanan, S., R. Ramesh, S. Karthikeyan, S. Raju, and V. Abhaikumar, "CAD models for coplanar waveguide synthesis using artificial neural networks," IETE Technical Review, Vol. 18, 123-129, 2001.

23. Yildiz, C. and M. Turkmen, "Very accurate and simple CAD models based on neural networks for coplanar waveguide synthesis," Int. J. of RF and Microwave CAE, Vol. 15, 218-224, 2005.
doi:10.1002/mmce.20072

24. Salivahanan, S., R. Ramesh, S. Karthikeyan, S. Raju, and V. Abhaikumar, "Artificial neural network models for coplanar stripline synthesis," IETE Journal of Education, Vol. 43, 27-31, 2002.

25. Hagan, M. T. and M. Menjah, "Training feedforward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, 989-993, 1994.
doi:10.1109/72.329697

26. Mackay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 4, 415-447, 1992.

27. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York, 1981.

28. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J., Vol. 7, 149-154, 1964.
doi:10.1093/comjnl/7.2.149

29. Moller, M. F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, 525-533, 1993.
doi:10.1016/S0893-6080(05)80056-5

30. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.

31. Christodoulou, C. G. and M. Georgiopoulos, Application of Neural Networks in Electromagnetics, Artech House, MA, 2001.

32. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Wave and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

33. Jin, L. C., L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Wave and Applications, Vol. 20, 1061-1069, 2006.
doi:10.1163/156939306776930259

34. Mohamed, M. D. A., E. A. Soliman, and M. A. El- Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Wave and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240

35. Thomas, V., et al., "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Wave and Applications, Vol. 19, 2113-2121, 2005.
doi:10.1163/156939305775570477


© Copyright 2014 EMW Publishing. All Rights Reserved