PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 67 > pp. 341-355

AN EFFICIENT ALGORITHM FOR EM SCATTERING BY ELECTRICALLY LARGE DIELECTRIC OBJECTS USING MR-QEB ITERATIVE SCHEME AND CG-FFT METHOD

By L. Zhao, T.-J. Cui, and W.-D. Li

Full Article PDF (1,398 KB)

Abstract:
In this paper, an efficient algorithm is presented to analyze the electromagnetic scattering by electrically large-scale dielectric objects. The algorithm is based on the multi-region and quasiedge buffer (MR-QEB) iterative scheme and the conjugate gradient (CG) method combined with the fast Fourier transform (FFT). This algorithm is done by dividing the computational domain into small sub-regions and then solving the problem in each sub-region with buffer area using the CG-FFT method. Considering the spurious edge effects, local quasi-edge buffer regions are used to suppress these unwanted effects and ensure the stability. With the aid of the CG-FFT method, the proposed algorithm is very efficient, and can solve very largescale problems which cannot be solved using the conventional CG-FFT method in a personal computer. The accuracy and efficiency of the proposed algorithm are verified by comparing numerical results with analytical Mie-series solutions for dielectric spheres.

Citation: (See works that cites this article)
L. Zhao, T.-J. Cui, and W.-D. Li, "An Efficient Algorithm for EM Scattering by Electrically Large Dielectric Objects Using Mr-Qeb Iterative Scheme and Cg-FFT Method," Progress In Electromagnetics Research, Vol. 67, 341-355, 2007.
doi:10.2528/PIER06121902
http://www.jpier.org/PIER/pier.php?paper=06121902

References:
1. Harrington, R. F., Field Computation by Moment Methods, MacMillan, New York, 1968.

2. Goggans, P. M., A. A. Kishk, and A. W. Glisson, "Electromagnetic scattering from objects composed of multiple homogeneous regions using a region-by-region solution," IEEE Trans. Antennas Propagat., Vol. 42, 865-871, 1994.
doi:10.1109/8.301713

3. Graglia, R. D., P. L. E. Uslenghi, and R. S. Zich, Moment method with isoparametric elements for three-dimensional anisotropic scatters, Proc. IEEE, Vol. 5, 750-760, 1989.

4. Jarem, J. M., "Method-of-moments solution of a parallel-plate waveguid aperture system," J. Appl. Phys., Vol. 59, 3566-3570, 1986.
doi:10.1063/1.336779

5. Livesay, D. E. and K. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," IEEE Trans. Microwave Theory Tech., Vol. MTT-22, 1273-1282, 1974.
doi:10.1109/TMTT.1974.1128475

6. Sarkar, T. K. and E. Arvas, "An integral equation approach to the analysis of finite microstrip antennas: Volume/surface formulation," IEEE Trans. Antennas Propagat., Vol. 38, 305-312, 1990.
doi:10.1109/8.52238

7. Doncker, P. D., "A potential integral equations method for electromagnetic scattering by penetrable bodies," IEEE Trans. Antennas Propagat., Vol. 49, 1037-1042, 2001.
doi:10.1109/8.933483

8. Smith, B., P. Bjorstad, and W. Gropp, Domain Decomposition Parallel Multilevel Methods for Elliptic Partial Differential Equation, Cambridge Univ. Press, New York, 1996.

9. Wohlmuth, B. I., Discretization Methods and Iterative Solvers Based on Domain Decomposition, Springer-Verlag, Berlin, 2001.

10. Pavarino, L. F. and A. Toselli, Recent Developments in Domain Decomposition Methods, Springer-Verlag, Berlin, 2002.

11. Vouvakis, M. N., Z. Cendes, and J. F. Lee, "A FEM domain decomposition mehtod for photonic and electromagentic band gap structures," IEEE Trans. Antennas Propagat., Vol. 54, 721-733, 2006.
doi:10.1109/TAP.2005.863095

12. Sharkawy, M. A., V. Demir, and A. Z. Elsherbeni, "The iterative multi-region algorithm using a hybrid finite difference frequency domain and method of moments techniques," Progress In Electromagnetics Research, Vol. 57, 19-32, 2006.
doi:10.2528/PIER05071001

13. Catedra, M. F., E. Gago, and L. Nuno, "A numerical scheme to obtain the rcs of three dimension bodies of size using the conjugate gradient method and fast fourier transform," IEEE Trans. Antennas Propagat., Vol. 5, 528-537, 1989.
doi:10.1109/8.24180

14. Shen, C. Y., K. J. Glover, M. I. Sancer, and A. D. Varvatsis, "The discrete fourier transform method of solving differential-integral equations in scattering theory," IEEE Trans. Antennas Propagat., Vol. 8, 1032-1041, 1989.
doi:10.1109/8.34141

15. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE. Trans. Microwace Theory Tech., Vol. 9, No. 40, 1757-1766, 1992.
doi:10.1109/22.156602

16. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems," J. Electromagn. Waves Applicat., Vol. 9, 1339-1357, 1995.

17. Cui, T. J. and W. C. Chew, "Fast algorithm for electromagnetic scattering by buried 3D dielectric objects of large size," IEEE Trans. Geosci. Remote Sensing, Vol. 37, 2597-2608, 1999.
doi:10.1109/36.789654

18. Weaver, J., Applications of Discrete and Continuous Fourier Analysis, Wiley, New York, 1983.

19. Cui, T. J., W. C. Chew, A. A. Aydiner, and Y. H. Zhang, "Fastforward solvers for the low-frequency detection of buried dielectric objects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 2026-2036, 2003.
doi:10.1109/TGRS.2003.813502

20. Millard, X. and Q. H. Liu, "A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media," IEEE Trans. Antennas Propagat., Vol. 51, 2393-2401, 2003.
doi:10.1109/TAP.2003.816311

21. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propagat., Vol. 36, 518-526, 1988.
doi:10.1109/8.1141

22. Brennan, C., P. Cullen, and M. Condon, "A novel iterative solution of the three dimensional electric field integral equation," IEEE Trans. Antennas Propagat., Vol. 52, 2781-2784, 2004.
doi:10.1109/TAP.2004.834405

23. Li, W. D., W. Hong, and H. X. Zhou, "Integral equation based overlapped domain decomposition method (IE-ODDM) for the analysis of electromagnetic scattering of 3-D conduction objects," Micro. Opt. Tech. Lett., Vol. 49, 265-274, 2007.
doi:10.1002/mop.22110

24. Wan, J. X. and C.-H. Liang, "A fast analysis of scattering from microstrip antennas over a wide band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801

25. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

26. Li, M.-K. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, Vol. 57, 311-333, 2006.
doi:10.2528/PIER05061303


© Copyright 2014 EMW Publishing. All Rights Reserved