PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 69 > pp. 323-339

SCATTERING BEHAVIOUR OF FRACTAL BASED METALLO-DIELECTRIC STRUCTURES

By A. R. Chandran, M. Gopikrishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan

Full Article PDF (1,100 KB)

Abstract:
The scattering behaviour of fractal based metallodielectric structures loaded over metallic targets of different shapes such as flat plate, cylinder and dihedral corner reflector are investigated for both TE and TM polarizations of the incident wave. Out of the various fractal structures studied,square Sierpinski carpet structure is found to give backscattering reduction for an appreciable range of frequencies. The frequency of minimum backscattering depends on the geometry of the structure as well as on the thickness of the substrate. This structure when loaded over a dihedral corner reflector is showing an enhancement in RCS for corner angles other than 90â—¦.

Citation: (See works that cites this article)
A. R. Chandran, M. Gopikrishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Scattering Behaviour of Fractal Based Metallo-Dielectric Structures," Progress In Electromagnetics Research, Vol. 69, 323-339, 2007.
doi:10.2528/PIER06122001
http://www.jpier.org/PIER/pier.php?paper=06122001

References:
1. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1977.

2. Jaggard, D. L., "On fractal electrodynamics," Recent Advances in Electromagnetic Theory, 183-224, 1990.

3. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, 2003.
doi:10.1109/MAP.2003.1189650

4. Peunte, C., J. Romeu, R. Pous, X. Garcia, and F. Benitez, "Fractal multiband antenna based on the Sierpinski gasket," IEE Electronics Letters, Vol. 32, No. 1, 1-2, 1996.
doi:10.1049/el:19960033

5. Peunte, C., J. Romeu, R. Pous, and A. Cardama, "On the behaviour of the Sierpinski multiband antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 4, 517-524, 1998.
doi:10.1109/8.664115

6. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

7. Jaggard, D. L. and Y. Kim, "Diffraction by band limited fractal screens," Opt. Soc. Am. A, Vol. 6, 1055-1062, 1987.

8. Sun, X. and D. L. Jaggard, "Wave interactions with generalized Cantor bar fractal multilayers," J. Appl. Phys., Vol. 70, 2500-2507, 1991.
doi:10.1063/1.349407

9. Puente-Baliarda, C. and R. Pous, "Fractal design of multiband and low side lobe arrays," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 730-739, 1996.
doi:10.1109/8.496259

10. Jakeman, E., "Scattering by a corrugated random surface with fractal slopes," J. Phys. A. Math Gen., Vol. 15, 55, 1982.
doi:10.1088/0305-4470/15/2/001

11. Stephen, D. S., T. Mathew, P . Mohanan, and K. G. Nair, "A modified strip grating with dual periodicity for RCS reduction," Microwave and Optical Technology Letters, Vol. 7, No. 7, 315-317, 1994.

12. Jose, K. A., C. K. Aanandan, and K. G. Nair, "Low backscattered TM-polarised strip gratings," IEE Electronics Letters, Vol. 23, No. 17, 905-906, 1987.
doi:10.1049/el:19870639

13. Mathew, T., D. S. Stephen, C. K. Aanandan, P . Mohanan, and K. G. Nair, "Wideband trapezoidal strip grating for elimination of specular reflection," IEE Electronics Letters, Vol. 30, No. 13, 1037-1039, 1994.
doi:10.1049/el:19940729

14. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

15. Shooshtari, A. and A. R. Sebak, "Electromagnetic scattering by parallel metamaterial cylinders," Progress In Electromagnetics Research, Vol. 57, 165-177, 2006.
doi:10.2528/PIER05071103

16. Mallahzadeh, A. R. and M. Soleimani, "Scattering computation from the target with lossy background," Progress In Electromagnetics Research, Vol. 57, 151-163, 2006.
doi:10.2528/PIER05070503

17. Chen, K.-M., "Minimization of backscattering of a cylinder by double loading," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 262-270, 1965.
doi:10.1109/TAP.1965.1138415

18. Braga Filho, O. M., A. J. de Faro Orlando, and Migliano, Reduction of the radar cross section of a cylindrical structure using central impedance loading, Proceedings of 2003 SBMO/IEEE MTT-S International Symposium on Microwave and Optoelectronics, Vol. 1, 20-23, 2003.

19. Michielssen, E. and R. Mitra, "RCS reduction of dielectric cylinders using the simulated annealing approach," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 4, 146-148, 1992.
doi:10.1109/75.129443

20. Manara, G. and A. Monorchio, "Electromagnetic scattering from longitudinally corrugated cylinders," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1700-1701, 1997.
doi:10.1109/8.650086

21. Arvas, E. and T. K. Sarkar, "RCS of two-dimensional structures consisting of both dielectrics and conductors of arbitrary cross section," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 5, 546-554, 1989.
doi:10.1109/8.24182

22. Knot, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House Inc, 1985.

23. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, New York, 1970.

24. Sorensen, K. W., A dihedral corner reflector model for full polarization calibration of RCS measurements, IEEE Antennas and Propagation Society International Symposium, Vol. 2, 748-751, 1991.

25. Currie, N., Radar Reflectivity Measurement Techniques and Applications, Artech House Inc, Norw ood, MA, 1989.

26. Knot, E. F., "RCS reduction of dihedral corners," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 3, 406-409, 1977.
doi:10.1109/TAP.1977.1141586

27. Ajaikumar, V., K. A. Jose, P . Mohanan, and K. G. Nair, Reduction of radar cross section of corner reflectors using strip grating technique, IEEE Antennas and Propagation Society International Symposium, Vol. 2, 707-710, 1992.

28. Gresser, T. and C. A. Balanis, RCS analysis and reduction for lossy dihedral corner reflectors, Proceeding of the IEEE, Vol. 77, No. 5, 806-814, 1989.

29. Lo, Y. C. and B. K. Chung, "P olarimetric RCS calibration using reference reflectors," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1749-1759, 2005.
doi:10.1163/156939305775696766

30. Edwards, D. A., R. A. McCulloch, and W. T. Shaw, Variational estimation of radar cross sections, Radar and Signal Processing, Vol. 137, No. 4, 237-242, 1990.

31. Anderson, W. C., "Consequences of nonorthogonality on the scattering properties of dihedral reflectors," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 10, 1154-1159, 1987.
doi:10.1109/TAP.1987.1143993

32. Chandran, A. R., T. Mathew, C. K. Aanandan, P . Mohanan, and K. Vasudevan, "Lo w backscattered dual-polarised metallodielectric structure based on Sierpinski carpet," Microwave and Optical Technology Letters, Vol. 40, No. 3, 246-248, 2004.
doi:10.1002/mop.11342

33. Chandran, A. R., T. Mathew, C. K. Aanandan, P . Mohanan, and K. Vasudevan, "Frequency tunable metallo-dielectric structure for backscattering reduction," IEE Electronics Letters, Vol. 40, No. 20, 1245-1246, 2004.
doi:10.1049/el:20046025


© Copyright 2014 EMW Publishing. All Rights Reserved