PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 69 > pp. 227-235

APPLICATION OF GENERALIZED MULTIPOLE TECHNIQUE TO THE ANALYSIS OF DISCONTINUITIES IN SUBSTRATE INTEGRATED WAVEGUIDES

By N. Talebi and M. Shahabadi

Full Article PDF (2,028 KB)

Abstract:
In this work, complex propagation constant of substrate integrated waveguide (SIW) with lossy dielectric is determined with the help of the generalized multipole technique (GMT). We then apply the GMT to compute scattering parameters of some discontinuities in SIW. The obtained results are compared with the results generated by a commercial finite-element solver.

Citation: (See works that cites this article)
N. Talebi and M. Shahabadi, "Application of Generalized Multipole Technique to the Analysis of Discontinuities in Substrate Integrated Waveguides," Progress In Electromagnetics Research, Vol. 69, 227-235, 2007.
doi:10.2528/PIER06122107
http://www.jpier.org/PIER/pier.php?paper=06122107

References:
1. Hafner, C., Generalized Multipole Technique for Computational Electromagnetics, Artech house, Boston, 1990.

2. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 65, No. 4, 1-10, 2002.

3. Moreno, E., D. Erni, and C. Hafner, "Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method," Phys. Rev. E, Vol. 66, No. 9, 1-12, 2002.

4. Talebi, N. and M. Shahabadi, "Analysis of a lossy microring using the generalized multipole technique," Progress In Electromagnetics Research, Vol. 66, 287-299, 2006.
doi:10.2528/PIER06112801

5. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms and design decompositions of a substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2516-2526, 2006.
doi:10.1109/TMTT.2006.875807

6. Ziolkowski, R. W., "FDTD simulation of reconfigurable electromagnetic bandgap structures for millimeter wave application," Progress In Electromagnetics Research, Vol. 41, 159-183, 2003.
doi:10.2528/PIER02010807

7. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of prob-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

8. Simpson, J., A. Taflove, J. A. Mix, and H. Heck, "Substrate integrated waveguides optimized for ultrahigh-speed digital interconnects," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 1983-1990, 2006.
doi:10.1109/TMTT.2006.873622

9. Che, W.-Q., E. K. N. Yung, and X.-E. Nie, "Design investigation on millimeter-eave ferrite phase shifter in substrate integrated waveguide," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.
doi:10.2528/PIER03082801

10. Chae, C.-B., J.-P. Lee, and S.-O. Park, "Analytical asymptotic extraction technique for the analysis of bend discontinuity," Progress In Electromagnetics Research, Vol. 33, 219-235, 2001.
doi:10.2528/PIER01012102

11. Xu, F., K. Wu, and W. Hong, "Domain decomposition FDTD algorithm combined with numerical TL calibration technique and its application in parameter extraction of substrate integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 329-338, 2006.
doi:10.1109/TMTT.2005.860503


© Copyright 2014 EMW Publishing. All Rights Reserved