Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 53-78


By S. K. Singh, J. P. Pandey, K. B. Thapa, and S. P. Ojha

Full Article PDF (1,058 KB)

We investigate the structural parameters for the formation of omnidirectional photonic band gap in one dimensional photonic crystal. Simple transfer matrix method is used for calculations. The effect of two parameters, namely, refractive index contrast and filling fraction on omnidirectional reflection is investigated. We find from our study that when nL, ni, ns and d are fixed, omnidirectional bandgap increases with increasing nH/nL i.e., with increasing nH. Therefore, omnidirectional bandgap can be increased by using the material of high refractive index nH when the low index material nL is fixed. We also find that for the considered system of Si-SiO2, omnidirectional reflection range increases with filling fraction, goes to a maximum value and finally comes to zero. The maximum value of the omnidirectional reflection range is obtained at a value of 0.29 of the filling fraction. The range for allowable values of refractive index of ambient medium ni has also been estimated.

Citation: (See works that cites this article)
S. K. Singh, J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

2. John, S., "Strong localization of photon in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

3. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.

4. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. Sotomayor Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

5. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.

6. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Letters, Vol. 23, 1573-1575, 1998.

7. Chen, K. M., A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., Vol. 75, 3805-3807, 1999.

8. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A, Vol. 68, 25-28, 1999.

9. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol., Vol. 17, 2018-2024, 1999.

10. Lee, H.-Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phys., Vol. 93, 819-8302003, 8302.

11. Yonte, T., J. J. Monz'on, A. Felipe, and L. L. S'anchez-Soto, "Optimizing omnidirectional reflection by multilayer mirrors," J. Opt. A: Pure Appl. Opt., Vol. 6, 127-131, 2004.

12. Rojas, J. A. M., J. Alpuente, J. PiËœneiro, and R. Sanchez, "Rigorous full vectorial analysis of electromagnetic wave propagation in 1D," Progress In Electromagnetics Research, Vol. 63, 89-105, 2006.

13. Wu, C.-J., "Transmission and reflection in a periodic superconductor/ dielectric film multilayer structure," J. Electromagn. Waves Appl., Vol. 19, 1991-1996, 2006.

14. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.

15. Hosomi, K., T. Fukamachi, H. Yamada, T. Katsuyama, and Y. Arakawa, "Optical characteristics of one-dimensional photonic crystals composed of high-aspect-ratio Si walls fabricated on Vgrooved wafer," Photonics and Nanostructures — Fundamentals and Applications, Vol. 4, 30-34, 2006.

16. Lin, W., G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Modern Optics, Vol. 52, 1155-1160, 2005.

17. Almeida, R. M. and S. Portal, "Photonic band gap structures by sol-gel processing," Current Opinion in Solid State and Materials Science, Vol. 7, 151-157, 2003.

18. Park, Y., Y.-G. Roh, C.-O. Cho, H. Jeon, M. G. Sung, and J. C. Woo, "GaAs-based near-infrared omnidirectional reflector," Appl. Phys. Lett., Vol. 82, 2770-2772, 2003.

19. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," J. Electromagn. Waves Appl., Vol. 20, 1439-1453, 2006.

20. Jewell, J. L., J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization," IEEE J. Quantum Electron., Vol. 27, 1332-1346, 1991.

21. Lee, H.-Y. and T. Yao, "TiO2(ZnS)/SiO2 one-dimensional photonic crystals and a proposal for vertical micro-cavity resonators," J. Korean Physical Society, Vol. 44, 387-392, 2004.

22. Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, "Photonic crystals as optical fibres — physics and applications," Optical Materials, Vol. 11, 143-151, 1998.

23. Russell, P., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.

24. Guenneu, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

25. Lo, S.-S., M.-S. Wang, and C.-C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Optics Express, Vol. 12, 6589-6593, 2004.

26. Wu, B.-I., E. Yang, J. A. Kong, J. A. Oswald, K. A. McIntosh, L. Mahoney, and S. Verghese, "Analysis of photonic crystal filters by the finite-difference time-domain technique," Microwave and Opt. Technol. Lett., Vol. 27, 81-87, 2000.

27. Kim, S.-H. and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Applied Optics, Vol. 41, 3187-3192, 2002.

28. Lusk, D. and F. Placido, "Omnidirectional mirror coating design for infrared applications," Thin Solid Films, Vol. 492, 226-231, 2005.

29. Liu, K., X. D. Yuan, W. M. Ye, J. R. Ji, M. Zeng, and C. Zeng, "Optical filter based on omnidirectional reflectors," Appl. Phys. B, Vol. 82, 391-393, 2006.

30. Ojha, S. P., P. K. Choudhary, P. Khastgir, and O. N. Singh, "Operating characteristics of an optical fibre with a linearly periodic refractive index pattern in the filter material," Japanese J. Appl. Phys., Vol. 31, 1992.

31. Srivastava, S. K. and S. P. Ojha, "Operating characteristics of an optical filter using metallic photonic band gap materials," Microwave Opt. Technol. Lett., 68-71, 2002.

32. Banerjee, A., S. K. Awasthi, U. Malaviya, and S. P. Ojha, "Design of a nano-layered tunable optical filter," J. of Modern Optics, Vol. 53, 1739-1752, 2006.

33. Xiao, H. and D. Yao, "Analysis of the design of a new tunable photonic crystal filter at visible band," Physica E, Vol. 27, 1-4, 2005.

34. Lee, B. J., C. J. Fu, and Z. M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett., Vol. 87, 071904, 2005.

35. Lee, H.-Y., H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 µm," Appl. Phys. Lett., Vol. 81, 4502-4504, 2002.

36. Yi, Y., P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, "Tunable multichannel optical filter based on silicon photonic band gap materials actuation," Appl. Phys. Lett., Vol. 81, 4112-41142002, 4112.

37. O'Sullivan, F., I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, "Optical characteristics of onedimensional Si/SiO2 photonic crystals for thermophotovoltaic applications," J. Appl. Phys., Vol. 97, 033529, 2005.

38. Bruyant, A., G. Le'rondel, P. J. Reece, and M. Gal, "Allsilicon omnidirectional mirrors based on one-dimensional photonic crystals," Appl. Phys. Lett., Vol. 82, 3227-3229, 2003.

39. Patrini, M., M. Galli, M. Belotti, L. C. Andreani, G. Guizzetti, G. Pucker, A. Lui, P. Bellutti, and L. Pavesi, "Optical response of one-dimensional (Si/SiO2)m photonic crystals," J. Appl. Phys., Vol. 92, 1816-1820, 2002.

40. Born, M. and E. Wolf, Principles of Optics, Pergamon, New York, 1980.

41. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.

© Copyright 2014 EMW Publishing. All Rights Reserved