PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 53-78

STRUCTURAL PARAMETERS IN THE FORMATION OF OMNIDIRECTIONAL HIGH REFLECTORS

By S. K. Singh, J. P. Pandey, K. B. Thapa, and S. P. Ojha

Full Article PDF (1,058 KB)

Abstract:
We investigate the structural parameters for the formation of omnidirectional photonic band gap in one dimensional photonic crystal. Simple transfer matrix method is used for calculations. The effect of two parameters, namely, refractive index contrast and filling fraction on omnidirectional reflection is investigated. We find from our study that when nL, ni, ns and d are fixed, omnidirectional bandgap increases with increasing nH/nL i.e., with increasing nH. Therefore, omnidirectional bandgap can be increased by using the material of high refractive index nH when the low index material nL is fixed. We also find that for the considered system of Si-SiO2, omnidirectional reflection range increases with filling fraction, goes to a maximum value and finally comes to zero. The maximum value of the omnidirectional reflection range is obtained at a value of 0.29 of the filling fraction. The range for allowable values of refractive index of ambient medium ni has also been estimated.

Citation: (See works that cites this article)
S. K. Singh, J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501
http://www.jpier.org/pier/pier.php?paper=07010501

References:
1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photon in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

4. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. Sotomayor Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

5. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

6. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Letters, Vol. 23, 1573-1575, 1998.

7. Chen, K. M., A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., Vol. 75, 3805-3807, 1999.
doi:10.1063/1.125462

8. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A, Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849

9. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol., Vol. 17, 2018-2024, 1999.
doi:10.1109/50.802989

10. Lee, H.-Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phys., Vol. 93, 819-8302003, 8302.
doi:10.1063/1.1530726

11. Yonte, T., J. J. Monz'on, A. Felipe, and L. L. S'anchez-Soto, "Optimizing omnidirectional reflection by multilayer mirrors," J. Opt. A: Pure Appl. Opt., Vol. 6, 127-131, 2004.
doi:10.1088/1464-4258/6/1/023

12. Rojas, J. A. M., J. Alpuente, J. PiËœneiro, and R. Sanchez, "Rigorous full vectorial analysis of electromagnetic wave propagation in 1D," Progress In Electromagnetics Research, Vol. 63, 89-105, 2006.
doi:10.2528/PIER06042501

13. Wu, C.-J., "Transmission and reflection in a periodic superconductor/ dielectric film multilayer structure," J. Electromagn. Waves Appl., Vol. 19, 1991-1996, 2006.
doi:10.1163/156939305775570468

14. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

15. Hosomi, K., T. Fukamachi, H. Yamada, T. Katsuyama, and Y. Arakawa, "Optical characteristics of one-dimensional photonic crystals composed of high-aspect-ratio Si walls fabricated on Vgrooved wafer," Photonics and Nanostructures — Fundamentals and Applications, Vol. 4, 30-34, 2006.
doi:10.1016/j.photonics.2005.11.005

16. Lin, W., G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Modern Optics, Vol. 52, 1155-1160, 2005.
doi:10.1080/09500340512331327606

17. Almeida, R. M. and S. Portal, "Photonic band gap structures by sol-gel processing," Current Opinion in Solid State and Materials Science, Vol. 7, 151-157, 2003.
doi:10.1016/S1359-0286(03)00045-7

18. Park, Y., Y.-G. Roh, C.-O. Cho, H. Jeon, M. G. Sung, and J. C. Woo, "GaAs-based near-infrared omnidirectional reflector," Appl. Phys. Lett., Vol. 82, 2770-2772, 2003.
doi:10.1063/1.1569045

19. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," J. Electromagn. Waves Appl., Vol. 20, 1439-1453, 2006.
doi:10.1163/156939306779274264

20. Jewell, J. L., J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization," IEEE J. Quantum Electron., Vol. 27, 1332-1346, 1991.
doi:10.1109/3.89950

21. Lee, H.-Y. and T. Yao, "TiO2(ZnS)/SiO2 one-dimensional photonic crystals and a proposal for vertical micro-cavity resonators," J. Korean Physical Society, Vol. 44, 387-392, 2004.

22. Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, "Photonic crystals as optical fibres — physics and applications," Optical Materials, Vol. 11, 143-151, 1998.
doi:10.1016/S0925-3467(98)00040-8

23. Russell, P., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.
doi:10.1126/science.1079280

24. Guenneu, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

25. Lo, S.-S., M.-S. Wang, and C.-C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Optics Express, Vol. 12, 6589-6593, 2004.
doi:10.1364/OPEX.12.006589

26. Wu, B.-I., E. Yang, J. A. Kong, J. A. Oswald, K. A. McIntosh, L. Mahoney, and S. Verghese, "Analysis of photonic crystal filters by the finite-difference time-domain technique," Microwave and Opt. Technol. Lett., Vol. 27, 81-87, 2000.
doi:10.1002/1098-2760(20001020)27:2<81::AID-MOP2>3.0.CO;2-S

27. Kim, S.-H. and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Applied Optics, Vol. 41, 3187-3192, 2002.

28. Lusk, D. and F. Placido, "Omnidirectional mirror coating design for infrared applications," Thin Solid Films, Vol. 492, 226-231, 2005.
doi:10.1016/j.tsf.2005.06.053

29. Liu, K., X. D. Yuan, W. M. Ye, J. R. Ji, M. Zeng, and C. Zeng, "Optical filter based on omnidirectional reflectors," Appl. Phys. B, Vol. 82, 391-393, 2006.
doi:10.1007/s00340-005-2087-8

30. Ojha, S. P., P. K. Choudhary, P. Khastgir, and O. N. Singh, "Operating characteristics of an optical fibre with a linearly periodic refractive index pattern in the filter material," Japanese J. Appl. Phys., Vol. 31, 1992.
doi:10.1143/JJAP.31.281

31. Srivastava, S. K. and S. P. Ojha, "Operating characteristics of an optical filter using metallic photonic band gap materials," Microwave Opt. Technol. Lett., 68-71, 2002.
doi:10.1002/mop.10518

32. Banerjee, A., S. K. Awasthi, U. Malaviya, and S. P. Ojha, "Design of a nano-layered tunable optical filter," J. of Modern Optics, Vol. 53, 1739-1752, 2006.
doi:10.1080/09500340600590547

33. Xiao, H. and D. Yao, "Analysis of the design of a new tunable photonic crystal filter at visible band," Physica E, Vol. 27, 1-4, 2005.
doi:10.1016/j.physe.2004.09.009

34. Lee, B. J., C. J. Fu, and Z. M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett., Vol. 87, 071904, 2005.
doi:10.1063/1.2010613

35. Lee, H.-Y., H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 µm," Appl. Phys. Lett., Vol. 81, 4502-4504, 2002.
doi:10.1063/1.1524291

36. Yi, Y., P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, "Tunable multichannel optical filter based on silicon photonic band gap materials actuation," Appl. Phys. Lett., Vol. 81, 4112-41142002, 4112.
doi:10.1063/1.1525072

37. O'Sullivan, F., I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, "Optical characteristics of onedimensional Si/SiO2 photonic crystals for thermophotovoltaic applications," J. Appl. Phys., Vol. 97, 033529, 2005.
doi:10.1063/1.1849437

38. Bruyant, A., G. Le'rondel, P. J. Reece, and M. Gal, "Allsilicon omnidirectional mirrors based on one-dimensional photonic crystals," Appl. Phys. Lett., Vol. 82, 3227-3229, 2003.
doi:10.1063/1.1574403

39. Patrini, M., M. Galli, M. Belotti, L. C. Andreani, G. Guizzetti, G. Pucker, A. Lui, P. Bellutti, and L. Pavesi, "Optical response of one-dimensional (Si/SiO2)m photonic crystals," J. Appl. Phys., Vol. 92, 1816-1820, 2002.
doi:10.1063/1.1492866

40. Born, M. and E. Wolf, Principles of Optics, Pergamon, New York, 1980.

41. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.


© Copyright 2014 EMW Publishing. All Rights Reserved