PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 72 > pp. 21-37

PERFORMANCE EVALUATION OF SEPARATED APERTURE SENSOR GPR SYSTEM FOR LAND MINE DETECTION

By K. Moustafa and K. F. A. Hussein

Full Article PDF (440 KB)

Abstract:
In this paper, the performance of the separated-aperture sensor working as ground-penetrating radar (GPR) is assessed over the operating frequency band. The capability of the separatedaperture sensor to detect buriedtargets is examinedb y evaluating andcomparing the electromagnetic coupling between the transmitting andreceiving antennas in two cases: (i) when the system is placed over an empty groundand(ii) when it is placedo ver a groundinsid e which a practical target is buriedat the proper depth. The finitedifference time-domain (FDTD) method is used for electromagnetic simulation. The results concerning the coupling between the transmitting andreceiving antennas are presentedconsid ering various practical parameters such as the operating frequency, the electric properties of the groundsoil andthe buriedtarget, andthe depth at which the target is buriedund er the groundsurface. It is shown that target detectability using the separated-aperture sensor is strongly dependent on all of the above parameters.

Citation:
K. Moustafa and K. F. A. Hussein, "Performance evaluation of separated aperture sensor GPR system for land mine detection," Progress In Electromagnetics Research, Vol. 72, 21-37, 2007.
doi:10.2528/PIER07022607
http://www.jpier.org/PIER/pier.php?paper=07022607

References:
1. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating-radar: FDTD theory compared with experiment," IEEE Trans. Geos. Remote Sensing, Vol. 34, No. 1, 36-44, 1996.
doi:10.1109/36.481890

2. Nishioka, Y., O. Maeshima, T. Uno, and S. Adachi, "FDTD analysis of resistor-loaded bow-tie antennas covered with ferritecoated conducting cavity for subsurface radar," IEEE Tarns. Antennas Propagat., Vol. 47, No. 6, 970-997, 1999.
doi:10.1109/8.777119

3. Montoya, T. P. and G. S. Smith, "Landmine detection using a ground-penetrating radar based on resistively loaded Vee dipoles," IEEE Trans. Antennas Propagat., Vol. 47, No. 12, 1795-1806, 1999.
doi:10.1109/8.817655

4. Montoya, T. P. and G. S. Smith, "A study of pulse radiation from several broad-band loaded monopoles," IEEE Trans. Antennas Propagat., Vol. 44, No. 8, 1172-1182, 1996.
doi:10.1109/8.511827

5. Lee, K.-H., C.-C. Chen, F. L. Texeira, and R. Lee, "Modeling andin vestigation of a geometrically complex UWB GPR antenna using FDTD," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 1983-1991, 2004.
doi:10.1109/TAP.2004.832501

6. Bourgeois, J. M. and G. S. Smith, "A complete electromagnetic simulation of the separated-aperture sensor for detecting buried landmines," IEEE Trans. Antennas Propagat., Vol. 46, No. 10, 1419-1426, 1998.
doi:10.1109/8.725272

7. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, 2000.

8. Brenger, J. P., "A perfectly matchedla yer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

9. Brenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181

10. Brenger, J. P., "Perfectly matchedla yer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas and Propagation, Vol. 51, 110-117, 1996.
doi:10.1109/8.477535

11. Kunz, K. and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics, CRC Press, 1993.

12. Watanabe, S.-I. and M. Taki, "An improvedFDTD model for the feeding gap of a thin-wire antenna," IEEE Microwave And Guided Wave Letters, Vol. 8, No. 4, 152-154, 1998.
doi:10.1109/75.663515

13. Qu, S. and C. Ruan, "Effect of roundcorners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006.
doi:10.2528/PIER05072103

14. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

15. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002


© Copyright 2014 EMW Publishing. All Rights Reserved