PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 72 > pp. 159-185

ON REDUCING THE PHASE ERRORS IN THE APERTURE OF A RADIAL WAVEGUIDE PIN-FED NON-RESONANT ARRAY ANTENNA

By L. Pazin and Y. Leviatan

Full Article PDF (790 KB)

Abstract:
With a proper design, the aperture field of a conventional radial waveguide pin-fed non-resonant array antenna (RWPFAA) can be rendered equiphase at a given central frequency. However, when the operating frequency deviates from this central frequency, the aperture field will exhibit an undesired conical phase error. To alleviate this problem, we propose a novel design in which the frequency-dependent aperture phase error distribution is rendered serrated. The gain and side-lobes of an RWPFAA with serrated phase error distributions are studied by resorting a simple model of a line source as well as a more representative model of a circular aperture. The theoretical results are supplemented by numerical data. Schemes of RWPFAAs comprising two and three sections, which render the phase error distribution in the antenna aperture serrated, are suggested.

Citation:
L. Pazin and Y. Leviatan, "On reducing the phase errors in the aperture of a radial waveguide PIN-fed non-resonant array antenna," Progress In Electromagnetics Research, Vol. 72, 159-185, 2007.
doi:10.2528/PIER07031102
http://www.jpier.org/PIER/pier.php?paper=07031102

References:
1. Carver, K. R., "A cavity-fed concentric ring phased array of helices for use in radio astronomy," Ph.D. Dissertation, 1967.

2. Nakano, H., H. Takeda, Y. Kitamura, H. Mimaki, and J. Yamauchi, "Low-profile helical array antenna fed from a radial waveguide," IEEE Trans. Antennas Propag., Vol. 40, No. 3, 279-284, 1992.
doi:10.1109/8.135470

3. Nakano, H., S. Ikusawa, K. Ohishi, H. Mimaki, and J. Yamauchi, "A curl antenna," IEEE Trans. Antennas Propag., Vol. 41, No. 11, 1570-1575, 1993.
doi:10.1109/8.267357

4. Haneishi, M. and S. Saito, Radiation properties of microstrip array antenna fed by radial line, IEEE AP Symposium Digest, 588-591, 1991.

5. Miyashita, H. and T. Katagi, "Radial line planar monopulse antenna," IEEE Trans. Antennas Propag., Vol. 44, No. 8, 1158-1165, 1996.
doi:10.1109/8.511825

6. Yamamoto, N., S. Saito, S. Morishita, and M. Haneishi, Radiation properties of shaped beam antenna using radial line microstrip array, IEEE AP Symposium Digest, 1924-1927, 1996.

7. Shavit, R., L. Pazin, Y. Israeli, M. Sigalov, and Y. Leviatan, "Dual frequency and dual circular polarization microstrip nonresonant array pin-fed from a radial line," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 3897-3905, 2003.
doi:10.1109/TAP.2005.859911

8. Federal Communications Commission Report and Order FCC 97- 1, Jan. 1997., Jan. 1997., 97, 1997.

9. Pazin, L. and Y. Leviatan, Effect of amplitude tapering and frequency-dependent phase errors on radiating characteristics of radial waveguide fed non-resonant array antenna, IEE Proc. Microw. Antennas Propag., Vol. 151, No. 4, 363-369, 2004.

10. Yamamoto, T., M. Takahashi, M. Ando, and N. Goto, "Enhancement of band-edge gain in radial line slot antennas using the power divider. A wide-band radial line slot antenna," IEICE Trans. Commun., Vol. E78-B, No. 3, 78, 1995.

11. Johnson, R. C., Antenna Engineering Handbook, 3rd edition, Chap. 4, McGraw-Hill, New York, 1993.


© Copyright 2014 EMW Publishing. All Rights Reserved