Vol. 74
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-04-23
Analysis of Interaction Between a Crystallographically Uniaxial Ferrite Resonator and a Hall-Effect Transducer
By
Progress In Electromagnetics Research, Vol. 74, 1-19, 2007
Abstract
In this paper, a number of physical phenomena taking place at the interaction of a crystallographically uniaxial ferrite resonator (UFR) with a semiconductor element, such as a Hall-effect transducer (HET), are analyzed. The UFR in this study is in a direct contact with an unpackaged HET. The interaction is studied in the vicinity of the ferromagnetic resonance in the UFR. The analytical model based on the combination of the problem of interaction of an arbitrarily orientated and shaped UFR with electromagnetic field of a multimode transmission line (waveguide) and thermal balance equations is proposed. A number of thermo/electro/magnetic phenomena that cause a voltage additional to that of the Hall-effect in the HET are analyzed. It is shown that this additional voltage is mainly due to Nernst-Ettingshausen thermo-magnetic effect. Some experimental results in 8-mm waveband are presented. This structure may serve as a frequency-selective primary transducer for detection and measurement of microwave (or millimeter-wave) power.
Citation
Marina Koledintseva, and Alexander Kitaitsev, "Analysis of Interaction Between a Crystallographically Uniaxial Ferrite Resonator and a Hall-Effect Transducer," Progress In Electromagnetics Research, Vol. 74, 1-19, 2007.
doi:10.2528/PIER07032703
References

1. Kitaytsev, A. A. and M. Y. Koledintseva, "Physical and technical bases of using ferromagnetic resonance in hexagonal ferrites for electromagnetic compatibility problems," IEEE Trans. Electromag. Compat., Vol. 41, No. 1, 15-21, 1999.
doi:10.1109/15.748132

2. Koledintseva, M. Y., A. A. Kitaitsev, V. A. Konkin, and V. F. Radchenko, "Spectrum visualization and measurement of power parameters of microwave wide-band noise," IEEE Trans. Instrum. Measur., Vol. 53, No. 4, 1119-1124, 2004.
doi:10.1109/TIM.2004.831178

3. Koledintseva, M. Y., "Modulation of mm-waves by an acoustically controlled monocrystalline hexagonal ferrite resonator," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 127-133, 2006.
doi:10.1163/156939306775777396

4. Bogdanov, G. B., "Theory of inertial nonlinear phenomena in ferrites at microwaves," Physical and Physico-Chemical Properties of Ferrites, 297-309, 1966.

5. Koledintseva, M. Y., "Frequency-selective power transducers, Hexagonal ferrite resonator — semiconductor element," Proc. Progress in Electromagnetic Research Symposium, 26-29, Cambridge, 2006.

6. Kuchis, E. V., Methods for Investigation of the Hall-effect, Sov. Radio, 1974.

7. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

8. Haala, J. and W. Wiesbeck, "Modeling microwave and hybrid heating processes including heat radiation effects," IEEE Trans. Microwave Theory and Techniques, Vol. 50, No. 5, 1346-1354, 2002.
doi:10.1109/22.999149

9. Gurevich, A. G., "Ferrite ellipsoid in a waveguide," Radiotekhnika i Electronika (Radio Engineering and Electronics), No. 8, 780-790, 1963.

10. Gurevich, A. G. and G. A. Melkov, Magnetization Oscillations and Waves, CRC Press, Boca Raton, FL, 1996.

11. Koledintseva, M. Y., "Electromagnetic modeling of 3D periodic structure containing magnetized or polarized ellipsoids," Opto- Electronics Review, Vol. 14, No. 3, 253-262, 2006.
doi:10.2478/s11772-006-0033-x

12. Vainshtein, L. A., Electromagnetic Waves, Moscow, 1988.

13. Koledintseva, M. Y., "M. Y. and A. A. Kitaitsev Modulation of millimeter waves by acoustically controlled hexagonal ferrite resonator," IEEE Trans. Magn., Vol. 41, No. 8, 2368-2376, 2005.
doi:10.1109/TMAG.2005.852951

14. Sihvola, A., Electromagnetic Mixing Formulas and Applications, 63-66, IEEE Electromagnetic Wave Series 47, Section 4.2.1, 63-66, 1999.

15. Koledintseva, M. Y., S. K. R. Chandra, R. E. Dubroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903