PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 291-307

RECONSTRUCTION OF 2D PEC TARGETS USING LIMITED SCATTERED INFORMATION

By J. Wu and T.-J. Cui

Full Article PDF (869 KB)

Abstract:
An efficient method is proposed in this paper to reconstruct the shape of a two-dimensional perfectly electrically conducting (PEC) target using limited scattered information. Based on the physical optics approximation, a Fourier transform relation has been obtained between the PEC target and the scattered fields. In theory, all scattered-field data are required for the reconstruction in the whole angle range (from 0 to 2π) and in the whole frequency range (from 0 to ∞). However, such data are impossible in practical applications. In this paper, we have discussed the influence of limited frequencies and limited incident angles on the imaging, where a Pade interpolation technique has been developed to obtain the scattered information in the whole angle range from limited-angle information. In order to overcome the ill-posed problem in the interpolation, the Tikhonov regularization has been used. Reconstruction examples are given to validate the efficiency of the proposed approach.

Citation:
J. Wu and T.-J. Cui, " reconstruction of 2D PEC targets using limited scattered information ," Progress In Electromagnetics Research, Vol. 74, 291-307, 2007.
doi:10.2528/PIER07042603
http://www.jpier.org/PIER/pier.php?paper=07042603

References:
1. Lewis, R. M., "Physical optics inverse diffraction," IEEE Trans. Ant. Propagat., Vol. 17, No. 3, 308-314, 1969.
doi:10.1109/TAP.1969.1139417

2. Das, Y., "On radar target shape estimation using algorithms for reconstruction from projections," IEEE Trans. Ant. Propagat., Vol. 26, No. 2, 274-279, 1978.
doi:10.1109/TAP.1978.1141825

3. Bennett, C. L., "Time domain inverse scattering," IEEE Trans. Ant. Propagat., Vol. 29, No. 2, 213-219, 1981.
doi:10.1109/TAP.1981.1142556

4. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Trans. Ant. Propagat., Vol. 30, 980-989, 1982.
doi:10.1109/TAP.1982.1142890

5. Boerner, W. M., C. M. Ho, and B. Y. Foo, "Use of Radon's projection theory in electromagnetic inverse scattering," IEEE Trans. Ant. Propagat., Vol. 2, No. 3, 336-341, 1981.
doi:10.1109/TAP.1981.1142581

6. Rothwell, E. J., K. M. Chen, D. P. Nyquist, and J. E. Ross, "Time-domain imaging of airborne targets using ultra-wideband or short-pulse radar," IEEE Trans. Ant. Propagat., Vol. 43, No. 3, 327-329, 1995.
doi:10.1109/8.372006

7. Dai, Y. C., E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "Time-domain imaging of radar targets using algorithms for reconstruction from projections," IEEE Trans. Ant. Propagat., Vol. 45, No. 8, 1227-1235, 1997.
doi:10.1109/8.611241

8. Chan, C. K. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Trans. Ant. Propagat., Vol. 29, No. 3, 312-319, 1981.
doi:10.1109/TAP.1981.1142571

9. Young, J. D., "Radar imaging from ramp response signatures," IEEE Trans. Ant. Propagat., Vol. 24, No. 5, 276-282, 1976.
doi:10.1109/TAP.1976.1141346

10. Dural, G. and D. L. Moffatt, "SARimaging to identify basic scattering mechanisms," IEEE Trans. Ant. Propagat., Vol. 42, No. 1, 99-110, 1994.
doi:10.1109/8.272307

11. Cui, T. J. and W. C. Chew, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Ant. Propagat., Vol. 52, No. 6, 1398-1411, 2004.
doi:10.1109/TAP.2004.829847

12. Belkebir, K., A. Baussard, and D. Premel, "Edge-preserving regularization scheme applied to modified gradient method to reconstruct two-dimensional targets from data laboratorycontrolled," Progress In Electromagnetics Research, Vol. 54, 1-17, 2005.
doi:10.2528/PIER04073003

13. Persson, K. and M. Gustafsson, "Reconstruction of equivalent currents using a near-field data transformation — with radome," Applications Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

14. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

15. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

16. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER05110801

17. Cockrel, C. R. and F. B. Beck, "Asymptotic waveform evaluation (AWE) technique for frequency domain electromagnetic analysis," NASA Technical Memorandum 110292, No. 11, 1996.

18. Tikhonov, A. N. and V. Y. Arsenin, Solution of Ill-Posed Problems, V. H. Winston and Sons, Washington D.C., 1977.

19. Cui, T. J., Y. Qin, G. L. Wang, and W. C. Chew, "Low-frequency detection of 2D buried objects using high-order extended Born approximations," Inverse Problems, Vol. 20, 41, 2004.
doi:10.1088/0266-5611/20/6/S04


© Copyright 2014 EMW Publishing. All Rights Reserved