Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 181-194


By S. K. Srivastava and S. P. Ojha

Full Article PDF (655 KB)

We study the omnidirectional reflection (ODR) in onedimensional photonic crystal (PC) structures consisting of alternate layers of fullerene-gallium arsenide (GaAs), fullerene-germanium (Ge) and fullerene-telurium (Te). The proposed structures give 100% reflection within a very wide range of wavelength in the visible and in a very narrow portion of near IR region of the EM spectrum. Fullerene (C60) in the form thin film structure is a suitable candidate for the designing the PC structure because alkali-metal doped thin film of fullerene acts as conductor and have almost zero absorption in the wavelength range > 530nm and near IR region. Also, in this region its dielectric constant has very small dependence on the frequency and can be ignored. Thus being a metallic counter part as well as almost frequency independent dielectric constant and easier fabrication technique it is useful in designing the PC structure. The investigation has also been made for the study the role of ambient medium and effect of number of layers in the formation of ODR.

S. K. Srivastava and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

3. Joannopoulos, J. D., P. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature, Vol. 386, 1997.

4. Yuan, K., X. Zheng, C.-L. Li, and W. L. She, "Design of omnidirectional and multiple channeled filters using onedimensional photonic crystals containing a defect layer with a negative refractive index," Phys. Rev. E, Vol. 71, 1-5, 2005.

5. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.

6. Dekkicha, L. and R. A. Naoum, "A new 900-bend in a two-dimensional photonic crystal waveguide using topology optimization," Progress In Electromagnetics Research, Vol. 56, 183-193, 2006.

7. Dmitriev, V., "2D magnetic photonic crystals with square latticegroup theoretical stand point," Progress In Electromagnetics Research, Vol. 58, 71-100, 2006.

8. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total refelction frequency range in one-dimensional photonic crystals by using heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002.

9. Wang, L.-G., H. Chen, and S. Y. Zhu, "Omnidirectional gap and defect mode of one-dimnesional photonic crystals with singlenegative materials," Phys. Rev. B, Vol. 70, 1-6, 2004.

10. Lee, H. Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phys., Vol. 93, 819-830, 2003.

11. Jiang, H. T., H. Chen, H. Li, and Y. Zhang, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative index materials," Appl. Phys. Lett., Vol. 83, 5386-5388, 2003.

12. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol., Vol. 17, 2018-2024, 1999.

13. Srivastava, S. K. and S. P. Ojha, "Reflection and anomalous behavior of refractive index in defect photonic band gap structure," Microwave and Opt. Technol. Lett., Vol. 38, 293-297, 2003.

14. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystal structures with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.

15. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.

16. Kratschmer, W., L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: a new form of carbon," Nature, Vol. 347, 354-358, 1990.

17. Rosseinsky, M. J., A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, and A. V. Makhija, "Superconductivity at 28K in RbxC60," Phys. Rev. Lett., Vol. 66, 2830-2832, 1991.

18. Taigaki, K., I. Hirosawa, T. W. Ebbsen, J. Mizuki, Y. Shimakawa, Y. Kubo, J. S. Tsai, and S. Kuroshima, "Superconductivity in sodium and lithium containing alkali-metal fullerides," Nature, Vol. 356, 419-421, 1992.

19. Haddon, R. C., A. F. Hebard, M. J. Rossemsky, D. W. Murphy, S. J. Duclos, K. B. Lynos, B. Miller, J. M. Rosamillia, R. M. Flemming, A. R. Kortan, A. J. Muller, R. H. Eick, S. M. Sahurak, R. Tycko, G. Dabbagh, and F. A. Thiel, "Conducting films of C60 and C70 by alkali metal doping," Nature, Vol. 350, 320-322, 1991.

20. Hwang, K. S. and D. Mauserall, "Vectorial electron transfer from and interfacial photo excited perphyrin to ground state fullerene C60 and C70 and from ascorbate to triplet C60 and C70 in a lipid layer," J. Am. Chem. Soc., Vol. 114, 9705-9706, 1992.

21. Hwang, K. S. and D. Mauserall, "Photoinduced electron transport across a lipid bilayer mediated by C70," Nature, Vol. 361, 138-140, 1993.

22. Hiromichi, K. H., E. Y. Yasushi, A. Y. Yohji, K. K. Koichi, H. T. Takaaki, and Y. S. Shigeo, "Dielectric constants of C60 and C70 — thin films," J. Phys. Chem. Solids, Vol. 58, 19-23, 1997.

23. Wu, C. J., "Transmission and reflection in a periodic superconductor/ dielectric film multilayer structure," J. Electromagn. Waves Appl., Vol. 19, 1991-1996, 2006.

24. Zhang, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," J. Electromagn. Waves Appl., Vol. 20, 1439-1453, 2006.

© Copyright 2014 EMW Publishing. All Rights Reserved