PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 163-170

GENERATION OF HIGH REPETITION RATE PICOSECOND PULSE TRAIN BASED ON ULTRA-SMALL SILICON WAVEGUIDE

By J.-W. Wu and F.-G. Luo

Full Article PDF (338 KB)

Abstract:
A designed model based on the ultra-small silicon waveguide(WG) is demonstrated to generate high repetition rate picosecond pulse train. Research result shows that 50 GHz repetition rate pulse can be obtained inside a 2-mm-long ultra-small silicon WG using signal wave at 1550nm with a cw power of 0.2mW and different delay modulation Gaussian pulses at 1670nm with peak of 0.6mW before the WG. the signal pulse train obtained has duration time as short as around 6 ps full width of half maximum(FWHM) and extinction ratio as large as up to 30 dB. Additionally,eac h pulse of signal pulse train obtained holds equal intensity and close Gaussian waveform.

Citation: (See works that cites this article)
J.-W. Wu and F.-G. Luo, "Generation of high repetition rate picosecond pulse train based on ultra-small silicon waveguide," Progress In Electromagnetics Research, Vol. 75, 163-170, 2007.
doi:10.2528/PIER07060102
http://www.jpier.org/pier/pier.php?paper=07060102

References:
1. Pavesi, L. and D. J. Lockwood, Silicon Photonics, Springer-V erlag, New York, 2004.

2. Reed, G. T. and A. P. Knights, Silicon Photonics: An Introduction, John Wiley, W est Sussex, 2004.

3. Rong, H., A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature, Vol. 433, No. 17, 292-294, 2005.
doi:10.1038/nature03273

4. Rong, H., R. Jones, Liu A., O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature, Vol. 433, No. 20, 725-728, 2005.
doi:10.1038/nature03346

5. Liang, T. and H. Tsang, "Efficien t Raman amplification in siliconon- insulator waveguide," Appl. Phys. Lett., Vol. 85, No. 16, 3343-3345, 2004.
doi:10.1063/1.1807960

6. Liu, A., H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightwave Technol., Vol. 24, No. 3, 1440-1455, 2006.
doi:10.1109/JLT.2005.863322

7. Almeida, V., R. Barrios, R. Panepucci, and M. Lipson, "Alloptical control of light on a silicon chip," Nature, Vol. 431, No. 28, 1081-1084, 2004.
doi:10.1038/nature02921

8. Blair, S. and K. Zheng, "In tensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides," Opt. Express, Vol. 14, No. 3, 1064-1069, 2006.
doi:10.1364/OE.14.001064

9. Rong, H., Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express, Vol. 14, No. 3, 1182-1188, 2006.
doi:10.1364/OE.14.001182

10. Shweanshumala, A. Biswas, and S. Konar, "Dynamically stable super Gaussian solitons in semiconductor doped glass fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 901-912, 2006.
doi:10.1163/156939306776149888

11. Biswas, A., S. Konar, and E. Zerrad, "Soliton-soliton interaction with parabolic law nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 927-939, 2006.
doi:10.1163/156939306776149833

12. Chen, X., N. Panoiu, and R. Osgood, "Theory of Ramanmediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron., Vol. 42, No. 2, 160-170, 2006.
doi:10.1109/JQE.2005.861827

13. Soref, R. and B. Bennett, "Electro optical effects in silicon," IEEE J. Quantum. Electron., Vol. QE-23, No. 1, 123-129, 1987.
doi:10.1109/JQE.1987.1073206

14. Kung, F. and H. T. Chuah, "A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

15. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

16. Chen, X., D. Liang, and K. Huang, "Micro wave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264


© Copyright 2014 EMW Publishing. All Rights Reserved