Vol. 75
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-18
Optimizing the Compact-FDTD Algorithm for Electrically Large Waveguiding Structures
By
Progress In Electromagnetics Research, Vol. 75, 253-269, 2007
Abstract
This work investigates the unique numerical dispersion behavior of the Compact-FDTD method for waveguide analysis, especially when the waveguide dimensions are much larger than the operating wavelength as in high-frequency EMC analysis or radio-wave propagation in tunnels. The divergence of this dispersion behavior from the standard FDTD algorithm is quantified and a major source of dispersion error is isolated and effectively eliminated. Optimized modeling parameters in terms of appropriate spatial and temporal resolutions are generated for computationally efficient and error-free numerical simulations of electrically large waveguiding structures.
Citation
Mohammed Hadi, and Samir Mahmoud, "Optimizing the Compact-FDTD Algorithm for Electrically Large Waveguiding Structures," Progress In Electromagnetics Research, Vol. 75, 253-269, 2007.
doi:10.2528/PIER07060703
References

1. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave Guided Wave Lett., Vol. 2, No. 5, 165-167, 1992.
doi:10.1109/75.134342

2. Jin, H., R. Vahkdieck, and S. Xiao, "An improved TLM fullwave analysis using a two dimensional mesh," IEEE MTT-S Int. Microwave Symp., No. 6, 675-677, 1991.
doi:10.1109/MWSYM.1991.147093

3. Asi, A. and L. Shafai, "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD," Electron. Lett., Vol. 28, No. 15, 1451-1452, 1992.
doi:10.1049/el:19920923

4. Xiao, S. and R. Vahldieck, "An efficient 2-D FDTD algorithm using real variables," IEEE Microwave Guided Wave Lett., Vol. 3, No. 5, 127-129, 1993.
doi:10.1109/75.217204

5. Luo, S. and Z. Chen, "An efficient modal FDTD for absorbing boundary conditions and incident wave generator in waveguide structures," Progress In Electromagnetics Research, Vol. 68, 229-246, 2007.
doi:10.2528/PIER06090506

6. Gokten, M., A. Z. Elsherbeni, and E. Arvas, "The multiresolution frequency domain method for general guided wave structures," Progress In Electromagnetics Research, Vol. 69, 55-66, 2007.
doi:10.2528/PIER06112002

7. Mahmoud, S. F., "Modal propagation of high frequency electromagnetic waves in straight and curved tunnels within the earth," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1611-1627, 2005.
doi:10.1163/156939305775537401

8. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a lossy rough surface cave using a high order time domain vector finite element method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1695-1705, 2006.
doi:10.1163/156939306779292408

9. Lu, J., B.-I. Wu, and J. A. Kong, "Guided Modes with a linearly varying transverse field inside a left-handed dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 689-697, 2006.
doi:10.1163/156939306776137728

10. Liu, F., J. E. Schutt-Aine, and J. Chen, "Full-wave analysis and modelling of multiconductor transmission lines via 2-D-FDTD and signal-processing techniques," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 2, 570-577, 2002.
doi:10.1109/22.982237

11. Pile, D. F. P., "Compact-2d fdtd for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index," Applied Physics B: Lasers and Optics, Vol. 81, No. 5, 607-613, 2005.
doi:10.1007/s00340-005-1916-0

12. Zhao, A. P., J. Juntunen, and A. V. Raisanen, "Relationship between the compact complex and real variable 2-D FDTD methods in arbitrary anisotropic dielectric waveguides," IEEE MTT-S Int. Microwave Symp., Vol. 1, No. 6, 83-87, 1997.

13. Wang, B.-Z., W. Shao, and Y. Wang, "2-d FDTD method for exact attenuation constant extraction of lossy transmission lines," IEEE Microwave Wireless Compon. Lett., Vol. 14, No. 6, 289-291, 2004.
doi:10.1109/LMWC.2004.828004

14. Cangellaris, A. C., "Numerical stability and numerical dispersion of a compact 2D-FDTD method used for the dispersion analysis of waveguides," IEEE Microwave Guided Wave Lett., Vol. 3, No. 1, 3-5, 1993.
doi:10.1109/75.180672

15. Zhang, J. and T. Y. Hsiang, "Dispersion characteristics of coplanar waveguides at subterahertz frequencies," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1411-1417, 2006.
doi:10.1163/156939306779276767

16. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "Modal analysis and waveguide dispersion of an optical waveguide having a cross-section of the shape of a cardioid," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277

17. Johnk, C. T., Engineering Electromagnetic Fields and Waves, 2nd edition, John Wiley, New York, NY, 1988.

18. Zhou, X. and G. Pan, "Application of Physical Spline Finite Element Method (PSFEM) to fullwave analysis of waveguides," Progress In Electromagnetics Research, Vol. 60, 19-41, 2006.
doi:10.2528/PIER05081102

19. Xiao, J.-K. and Y. Li, "Analysis for transmission characteristics of similar rectangular guide filled with arbitrary-shaped inhomogeneous dielectric," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 331-340, 2006.
doi:10.1163/156939306775701777

20. Harrington, R. F., Time-Harmonic Electromagnetic Fields, IEEE Press/Wiley-Interscience, New York, NY, 2001.

21. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 FDTD algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601