PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 407-419

BANDWIDTH WIDENING TECHNIQUES FOR DIRECTIVE ANTENNAS BASED ON PARTIALLY REFLECTING SURFACES

By H. Boutayeb, T. A. Denidni, and M. Nedil

Full Article PDF (662 KB)

Abstract:
The directivity bandwidth of Fabry-Perot directive antennas is first evaluated theoretically. Then, different techniques are proposed to widen the directivity bandwidth of antennas using Partially Reflecting Surfaces. The bandwidths obtained with the proposed solutions are compared to the bandwidth of a classical Fabry- Perot directive antenna.

Citation:
H. Boutayeb, T. A. Denidni, and M. Nedil, " bandwidth widening techniques for directive antennas based on partially reflecting surfaces ," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
doi:10.2528/PIER07060905
http://www.jpier.org/PIER/pier.php?paper=07060905

References:
1. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. A. Denidni, "Directivity of an antenna embedded inside a Fabry-Perot cavity: theory and design," Micro. Opt. Tech. Lett., Vol. 48, 12-17, 2006.
doi:10.1002/mop.21249

2. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry- Perot resonator printed antennas using EBG substrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, 719-728, 2007.
doi:10.1163/156939307780749147

3. Pirhadi, A. and M. Hakkak, "An analytical investigation of the radiation characteristics of infinitesimal dipole antenna embedded in partially reflective surfaces to obtain high directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501

4. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 220-224, 2006.
doi:10.1109/TAP.2005.861578

5. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

6. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive ebg resonator antenna using square loop fss as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

7. Li, B., B. Wu, and C.-H. Liang, "Highgain circular waveguide array antenna using Electromagnetic Band Gap Structures," Journal of Electromagnetic Waves and Applications, Vol. 20, 955-966, 2006.
doi:10.1163/156939306776149860

8. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. on Antennas Prop., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

9. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902-1, 2002.
doi:10.1103/PhysRevLett.89.213902

10. Enoch, S., G. Tayeb, and D. Maystre, "Dispersion diagrams of blochmo des applied to the design of directive sources," Progress In Electromagnetics Research, Vol. 41, 61-81, 2003.
doi:10.2528/PIER02010803

11. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

12. Li, B., B. Wu, and C.-H. Liang, "Study on high gain circular waveguide array antenna withmetamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101

13. Boutayeb, H. and T. A. Denidni, "Analysis and design of a high-gain antenna based on metallic crystals," Journal of Electromagnetic Wave and Application, Vol. 20, 599-614, 2006.
doi:10.1163/156939306776137755


© Copyright 2014 EMW Publishing. All Rights Reserved